scholarly journals Mutations in a membrane permease or hpt lead to 6-thioguanine resistance in Staphylococcus aureus

Author(s):  
Denny Chin ◽  
Mariya I. Goncheva ◽  
Ronald S. Flannagan ◽  
David E. Heinrichs

We recently discovered that 6-thioguanine (6-TG) is an anti-virulence compound that is produced by a number of coagulase negative staphylococci. In Staphylococcus aureus , it inhibits de novo purine biosynthesis and ribosomal protein expression, thus inhibiting growth and abrogating toxin production. Mechanisms by which S. aureus may develop resistance to this compound are currently unknown. Here, we show that 6-TG-resistant S. aureus mutants emerge spontaneously when the bacteria are subjected to high concentrations of 6-TG in vitro . Whole genome sequencing of these mutants revealed frameshift and missense mutations in a xanthine-uracil permease family protein ( stgP : s ix t hio g uanine p ermease) and single nucleotide polymorphisms in hypoxanthine phosphoribosyltransferase ( hpt ). These mutations engender S. aureus the ability to resist both the growth inhibitory and toxin down regulation effects of 6-TG. While prophylactic administration of 6-TG ameliorates necrotic lesions in subcutaneous infection of mice with MRSA strain USA300-LAC, the drug did not reduce lesion size formed by the 6-TG resistant strains. These findings identify mechanisms of 6-TG resistance and this information can be leveraged to inform strategies to slow the evolution of resistance.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Denny Chin ◽  
Mariya I. Goncheva ◽  
Ronald S. Flannagan ◽  
Shayna R. Deecker ◽  
Veronica Guariglia-Oropeza ◽  
...  

AbstractCoagulase-negative staphylococci and Staphylococcus aureus colonize similar niches in mammals and conceivably compete for space and nutrients. Here, we report that a coagulase-negative staphylococcus, Staphylococcus chromogenes ATCC43764, synthesizes and secretes 6-thioguanine (6-TG), a purine analog that suppresses S. aureus growth by inhibiting de novo purine biosynthesis. We identify a 6-TG biosynthetic gene cluster in S. chromogenes and other coagulase-negative staphylococci including S. epidermidis, S. pseudintermedius and S. capitis. Recombinant S. aureus strains harbouring this operon produce 6-TG and, when used in subcutaneous co-infections in mice with virulent S. aureus USA300, protect the host from necrotic lesion formation. Used prophylactically, 6-TG reduces necrotic skin lesions in mice infected with USA300, and this effect is mediated by abrogation of toxin production. RNAseq analyses reveal that 6-TG downregulates expression of genes coding for purine biosynthesis, the accessory gene regulator (agr) and ribosomal proteins in S. aureus, providing an explanation for its effect on toxin production.


2020 ◽  
Vol 65 (9-10) ◽  
pp. 3-7
Author(s):  
V. V. Gostev ◽  
Yu. V. Sopova ◽  
O. S. Kalinogorskaya ◽  
M. E. Velizhanina ◽  
I. V. Lazareva ◽  
...  

Glycopeptides are the basis of the treatment of infections caused by MRSA (Methicillin-Resistant Staphylococcus aureus). Previously, it was demonstrated that antibiotic tolerant phenotypes are formed during selection of resistance under the influence of high concentrations of antibiotics. The present study uses a similar in vitro selection model with vancomycin. Clinical isolates of MRSA belonging to genetic lines ST8 and ST239, as well as the MSSA (ATCC29213) strain, were included in the experiment. Test isolates were incubated for five hours in a medium with a high concentration of vancomycin (50 μg/ml). Test cultures were grown on the medium without antibiotic for 18 hours after each exposure. A total of ten exposure cycles were performed. Vancomycin was characterized by bacteriostatic action; the proportion of surviving cells after exposure was 70–100%. After selection, there was a slight increase in the MIC to vancomycin (MIC 2 μg/ml), teicoplanin (MIC 1.5–3 μg/ml) and daptomycin (MIC 0.25–2 μg/ml). According to the results of PAP analysis, all strains showed an increase in the area under curve depending on the concentration of vancomycin after selection, while a heteroresistant phenotype (with PAP/AUC 0.9) was detected in three isolates. All isolates showed walK mutations (T188S, D235N, E261V, V380I, and G223D). Exposure to short-term shock concentrations of vancomycin promotes the formation of heteroresistance in both MRSA and MSSA. Formation of VISA phenotypes is possible during therapy with vancomycin.


2021 ◽  
Author(s):  
Filippo Fratini ◽  
Margherita Giusti ◽  
Simone Mancini ◽  
Francesca Pisseri ◽  
Basma Najar ◽  
...  

AbstractStaphylococcus aureus and coagulase-negative staphylococci are among the major causes of mastitis in sheep. The main goal of this research was to determine the in vitro antibacterial activity of several essential oils (EOs, n 30), then five of them were chosen and tested alone and in blends against staphylococci isolates. Five bacteria were isolated from episodes of ovine mastitis (two S. aureus and three S. xylosus). Biochemical and molecular methods were employed to identify the isolates and disk diffusion method was performed to determine their antimicrobial-resistance profile. The relative percentage of the main constituents in the tested essential oils and their blends was detected by GC-EIMS analysis. Antibacterial and bactericidal effectiveness of essential oils and blends were evaluated through minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). All of them showed sensitivity to the used antimicrobials. The EOs with the highest antibacterial activity were those belonging to the Lamiaceae family characterized by high concentrations of thymol, carvacrol and its precursor p-cymene, together with cinnamon EO, rich in cinnamaldehyde. In terms of both MIC and MBC values, the blend composed by Thymus capitatus EO 40%, Cinnamomum zeylanicum EO 20%, Thymus serpyllum EO 20% and Satureja montana EO 20% was found to be the most effective against all the isolates. Some essential oils appear to represent, at least in vitro, a valid tool against ovine mastitis pathogens. Some blends showed a remarkable effectiveness than the single oils, highlighting a synergistic effect in relation to the phytocomplex.


2020 ◽  
Vol 12 (03) ◽  
pp. 230-232
Author(s):  
Dhruv Mamtora ◽  
Sanjith Saseedharan ◽  
Ritika Rampal ◽  
Prashant Joshi ◽  
Pallavi Bhalekar ◽  
...  

Abstract Background Blood stream infections (BSIs) due to Gram-positive pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) are associated with high mortality ranging from 10 to 60%. The current anti-MRSA agents have limitations with regards to safety and tolerability profile which limits their prolonged usage. Levonadifloxacin and its oral prodrug alalevonadifloxacin, a novel benzoquinolizine antibiotic, have recently been approved for acute bacterial skin and skin structure infections including diabetic foot infections and concurrent bacteremia in India. Methods The present study assessed the potency of levonadifloxacin, a novel benzoquinolizine antibiotic, against Gram-positive blood stream clinical isolates (n = 31) collected from January to June 2019 at a tertiary care hospital in Mumbai, India. The susceptibility of isolates to antibacterial agents was defined following the Clinical and Laboratory Standard Institute interpretive criteria (M100 E29). Results High prevalence of MRSA (62.5%), quinolone-resistant Staphylococcus aureus (QRSA) (87.5%), and methicillin-resistant coagulase-negative staphylococci (MR-CoNS) (82.35%) were observed among bacteremic isolates. Levonadifloxacin demonstrated potent activity against MRSA, QRSA, and MR-CoNS strains with significantly lower minimum inhibitory concentration MIC50/90 values of 0.5/1 mg/L as compared with levofloxacin (8/32 mg/L) and moxifloxacin (2/8 mg/L). Conclusion Potent bactericidal activity coupled with low MICs support usage of levonadifloxacin for the management of BSIs caused by multidrug resistant Gram-positive bacteria.


mSphere ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Olivia A. Todd ◽  
Mairi C. Noverr ◽  
Brian M. Peters

ABSTRACT Candida albicans and Staphylococcus aureus are common causes of nosocomial infections with severe morbidity and mortality. Murine polymicrobial intra-abdominal infection (IAI) with C. albicans and S. aureus results in acute mortality dependent on the secreted cytolytic effector alpha-toxin. Here, we confirmed that alpha-toxin is elevated during polymicrobial growth compared to monomicrobial growth in vitro. Therefore, this study sought to unravel the mechanism by which C. albicans drives enhanced staphylococcal alpha-toxin production. Using a combination of functional and genetic approaches, we determined that an intact agr quorum sensing regulon is necessary for enhanced alpha-toxin production during coculture and that a secreted candidal factor likely is not implicated in elevating agr activation. As the agr system is pH sensitive, we observed that C. albicans raises the pH during polymicrobial growth and that this correlates with increased agr activity and alpha-toxin production. Modulation of the pH could predictably attenuate or activate agr activity during coculture. By using a C. albicans mutant deficient in alkalinization (stp2Δ/Δ), we confirmed that modulation of the extracellular pH by C. albicans can drive agr expression and toxin production. Additionally, the use of various Candida species (C. glabrata, C. dubliniensis, C. tropicalis, C. parapsilosis, and C. krusei) demonstrated that those capable of raising the extracellular pH correlated with elevated agr activity and alpha-toxin production during coculture. Overall, we demonstrate that alkalinization of the extracellular pH by the Candida species leads to sustained activation of the staphylococcal agr system. IMPORTANCE Candida albicans and Staphylococcus aureus are commonly coisolated from central venous catheters and deep-seated infections, including intra-abdominal sepsis. Thus, they represent a significant cause of nosocomial morbidity and mortality. Yet how these organisms behave in the context of polymicrobial growth remains poorly understood. In this work, we set out to determine the mechanism by which activation of the staphylococcal agr quorum sensing system and production of its major virulence effector alpha-toxin is enhanced during coculture with C. albicans. Surprisingly, we likely ruled out that a secreted candidal factor drives this process. Instead, we demonstrated that alkalinization of the extracellular milieu by C. albicans and other Candida species correlated with elevated agr activity. Thus, we propose a mechanism where modulation of the extracellular pH by fungal opportunists can indirectly alter virulence of a bacterial pathogen. Uncovering molecular events that drive interkingdom pathogenicity mechanisms may enhance surveillance and treatment for devastating polymicrobial infections.


2008 ◽  
Vol 82 (14) ◽  
pp. 6902-6910 ◽  
Author(s):  
Frank T. Vreede ◽  
Hugh Gifford ◽  
George G. Brownlee

ABSTRACT The mechanisms regulating the synthesis of mRNA, cRNA, and viral genomic RNA (vRNA) by the influenza A virus RNA-dependent RNA polymerase are not fully understood. Previous studies in our laboratory have shown that virion-derived viral ribonucleoprotein complexes synthesize both mRNA and cRNA in vitro and early in the infection cycle in vivo. Our continued studies showed that de novo synthesis of cRNA in vitro is more sensitive to the concentrations of ATP, CTP, and GTP than capped-primer-dependent synthesis of mRNA. Using rescued recombinant influenza A/WSN/33 viruses, we now demonstrate that the 3′-terminal sequence of the vRNA promoter dictates the requirement for a high nucleoside triphosphate (NTP) concentration during de novo-initiated replication to cRNA, whereas this is not the case for the extension of capped primers during transcription to mRNA. In contrast to some other viral polymerases, for which only the initiating NTP is required at high concentrations, influenza virus polymerase requires high concentrations of the first three NTPs. In addition, we show that base pair mutations in the vRNA promoter can lead to nontemplated dead-end mutations during replication to cRNA in vivo. Based on our observations, we propose a new model for the de novo initiation of influenza virus replication.


2019 ◽  
Vol 202 (6) ◽  
Author(s):  
Hector Gabriel Morales-Filloy ◽  
Yaqing Zhang ◽  
Gabriele Nübel ◽  
Shilpa Elizabeth George ◽  
Natalya Korn ◽  
...  

ABSTRACT Nicotinamide adenosine dinucleotide (NAD) has been found to be covalently attached to the 5′ ends of specific RNAs in many different organisms, but the physiological consequences of this modification are largely unknown. Here, we report the occurrence of several NAD-RNAs in the opportunistic pathogen Staphylococcus aureus. Most prominently, RNAIII, a central quorum-sensing regulator of this bacterium’s physiology, was found to be 5′ NAD capped in a range from 10 to 35%. NAD incorporation efficiency into RNAIII was found to depend in vivo on the −1 position of the P3 promoter. An increase in RNAIII’s NAD content led to a decreased expression of alpha- and delta-toxins, resulting in reduced cytotoxicity of the modified strains. These effects seem to be caused neither by changes in RNAIII’s secondary structure nor by a different translatability upon NAD attachment, as indicated by unaltered patterns in in vitro chemical probing and toeprinting experiments. Even though we did not observe any effect of this modification on RNAIII’s secondary structure or translatability in vitro, additional unidentified factors might account for the modulation of exotoxins in vivo. Ultimately, the study constitutes a step forward in the discovery of new roles of the NAD molecule in bacteria. IMPORTANCE Numerous organisms, including bacteria, are endowed with a 5′ NAD cap in specific RNAs. While the presence of the 5′ NAD cap modulates the stability of the modified RNA species, a significant biological function and phenotype have not been assigned so far. Here, we show the presence of a 5′ NAD cap in RNAIII from S. aureus, a dual-function regulatory RNA involved in quorum-sensing processes and regulation of virulence factor expression. We also demonstrate that altering the natural NAD modification ratio of RNAIII leads to a decrease in exotoxin production, thereby modulating the bacterium’s virulence. Our work unveils a new layer of regulation of RNAIII and the agr system that might be linked to the redox state of the NAD molecule in the cell.


2019 ◽  
Vol 220 (6) ◽  
pp. 1019-1028 ◽  
Author(s):  
Liang Li ◽  
Genzhu Wang ◽  
Ambrose Cheung ◽  
Wessam Abdelhady ◽  
Kati Seidl ◽  
...  

AbstractBackgroundMgrA is an important global virulence gene regulator in Staphylococcus aureus. In the present study, the role of mgrA in host-pathogen interactions related to virulence was explored in both methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) strains.MethodsIn vitro susceptibilities to human defense peptides (HDPs), adherence to fibronectin (Fn) and endothelial cells (ECs), EC damage, α-toxin production, expression of global regulator (eg, agr RNAIII) and its downstream effectors (eg, α-toxin [hla] and Fn binding protein A [fnbA]), MgrA binding to fnbA promoter, and the effect on HDP-induced mprF and dltA expression were analyzed. The impact of mgrA on virulence was evaluated using a mouse bacteremia model.ResultsmgrA mutants displayed significantly higher susceptibility to HDPs, which might be related to the decreased HDP-induced mprF and dltA expression but decreased Fn and EC adherence, EC damage, α-toxin production, agr RNAIII, hla and fnbA expression, and attenuated virulence in the bacteremia model as compared to their respective parental and mgrA-complemented strains. Importantly, direct binding of MgrA to the fnbA promoter was observed.ConclusionsThese results suggest that mgrA mediates host-pathogen interactions and virulence and may provide a novel therapeutic target for invasive S. aureus infections.


PLoS ONE ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. e0211901 ◽  
Author(s):  
Andreea Nissenkorn ◽  
Yael Almog ◽  
Inbar Adler ◽  
Mary Safrin ◽  
Marina Brusel ◽  
...  
Keyword(s):  
De Novo ◽  

Sign in / Sign up

Export Citation Format

Share Document