scholarly journals Cage environment regulates gut microbiota independent of toll-like receptors

2021 ◽  
Author(s):  
J.H. Lipinski ◽  
X. Zhou ◽  
S.J Gurczynski ◽  
J.R. Erb-Downward ◽  
R.P. Dickson ◽  
...  

The gut microbiome orchestrates epithelial homeostasis and both local and remote immunological responses. Critical to these regulatory interactions are innate immune receptors termed toll-like receptors. Studies to date have implicated innate immunity and toll-like receptors in shaping key features of the gut microbiome. However, a variety of biological and environmental variables are also implicated in determining gut microbiota composition. In this report, we hypothesized that co-housing and environment dominated the regulation of gut microbiota in animal models independent of innate immunity. To determine the importance of these variables, innate immunity or environment in shaping gut microbiota, we used a randomized co-housing strategy and transgenic TLR-deficient mice. We have found that mice co-housed together by genotype exhibited limited changes over time in the composition of gut microbiota. However, in mice randomized to cage, we report extensive changes in gut microbiota, independent of TLR function whereby the fecal microbiota of TLR-deficient mice converge with wild type. TLR5-deficient mice in these experiments exhibit a greater susceptibility for comparative changes in microbiota to other TLR-deficient mice and wild type mice. Our work has broad implications for the study of innate immunity and host-microbiota interactions. Given the profound impact that gut dysbiosis may have on immunity, this report highlights the potential impact of co-housing on gut microbiota and indices of inflammation as outcomes in biological models of infectious or inflammatory disease.

Author(s):  
Afrida Rahman-Enyart ◽  
Wenbin Yang ◽  
Ryan E. Yaggie ◽  
Bryan A. White ◽  
Michael Welge ◽  
...  

Dysbiosis of gut microbiota is associated with many pathologies, yet host factors modulating microbiota remain unclear. Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating condition of chronic pelvic pain often with co-morbid urinary dysfunction and anxiety/depression, and recent studies find fecal dysbiosis in IC/BPS patients. We identified the locus encoding acyloxyacyl hydrolase, Aoah, as a modulator of pelvic pain severity in a murine IC/BPS model. AOAH-deficient mice spontaneously develop rodent correlates of pelvic pain, increased responses to induced pelvic pain models, voiding dysfunction, and anxious/depressive behaviors. Here, we report that AOAH-deficient mice exhibit dysbiosis of GI microbiota. AOAH-deficient mice exhibit an enlarged cecum, a phenotype long associated with germ-free rodents, and a "leaky gut" phenotype. AOAH-deficient ceca showed altered gene expression consistent with inflammation, Wnt signaling, and urologic disease. 16S sequencing of stool revealed altered microbiota in AOAH-deficient mice, and GC-MS identified altered metabolomes. Co-housing AOAH-deficient mice with wild type mice resulted in converged microbiota and altered predicted metagenomes. Co-housing also abrogated the pelvic pain phenotype of AOAH-deficient mice, which was corroborated by oral gavage of AOAH-deficient mice with stool slurry of wild type mice. Converged microbiota also alleviated comorbid anxiety-like behavior in AOAH-deficient mice. Oral gavage of AOAH-deficient mice with anaerobes cultured from IC/BPS stool resulted in exacerbation of pelvic allodynia. Together, these data indicate that AOAH is a host determinant of normal gut microbiota, and dysbiosis associated with AOAH deficiency contributes to pelvic pain. These findings suggest that the gut microbiome is a potential therapeutic target for IC/BPS.


2021 ◽  
Author(s):  
Afrida Rahman-Enyart ◽  
Wenbin Yang ◽  
Ryan E. Yaggie ◽  
Bryan White ◽  
Michael Welge ◽  
...  

ABSTRACTDysbiosis of gut microbiota is associated with many pathologies, yet host factors modulating microbiota remain unclear. Interstitial cystitis/bladder pain syndrome (IC/BPS or “IC”) is a debilitating condition of chronic pelvic pain often with co-morbid urinary dysfunction and anxiety/depression, and recent studies find fecal dysbiosis in IC/BPS patients. We previously identified the locus encoding acyloxyacyl hydrolase, Aoah, as a modulator of pelvic pain severity in a murine IC/BPS model. AOAH-deficient mice spontaneously develop rodent correlates of pelvic pain, increased responses to induced pelvic pain models, voiding dysfunction, and anxious/depressive behaviors. Here, we report that AOAH-deficient mice exhibit dysbiosis of GI microbiota. AOAH-deficient mice exhibit an enlarged cecum, a phenotype long associated with germ-free rodents, and reduced trans-epithelial electrical resistance consistent with a “leaky gut” phenotype. AOAH-deficient ceca showed altered gene expression consistent with inflammation, Wnt signaling, and urologic disease. 16S rRNA sequencing of stool revealed altered microbiota in AOAH-deficient mice, and GC-MS identified altered metabolomes. Co-housing AOAH-deficient mice with wild type mice resulted in converged microbiota and altered predicted metagenomes. Co-housing also abrogated the pelvic pain phenotype of AOAH-deficient mice, which was corroborated by oral gavage of AOAH-deficient mice with stool slurry of wild type mice. Converged microbiota also alleviated comorbid anxiety-like behavior in AOAH-deficient mice. Oral gavage of AOAH-deficient mice with anaerobes cultured from IC/BPS stool resulted in exacerbation of pelvic allodynia. Together, these data indicate that AOAH is a host determinant of normal gut microbiota, and the dysbiosis associated with AOAH deficiency contributes to pelvic pain. These findings suggest that the gut microbiome is a potential therapeutic target for IC/BPS.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rafael Corrêa ◽  
Igor de Oliveira Santos ◽  
Heloísa Antoniella Braz-de-Melo ◽  
Lívia Pimentel de Sant’Ana ◽  
Raquel das Neves Almeida ◽  
...  

AbstractGut microbiota composition can modulate neuroendocrine function, inflammation, and cellular and immunological responses against different pathogens, including viruses. Zika virus (ZIKV) can infect adult immunocompetent individuals and trigger brain damage and antiviral responses. However, it is not known whether ZIKV infection could impact the gut microbiome from adult immunocompetent mice. Here, we investigated modifications induced by ZIKV infection in the gut microbiome of immunocompetent C57BL/6J mice. Adult C57BL/6J mice were infected with ZIKV and the gut microbiota composition was analyzed by next-generation sequencing of the V4 hypervariable region present in the bacterial 16S rDNA gene. Our data showed that ZIKV infection triggered a significant decrease in the bacteria belonging to Actinobacteria and Firmicutes phyla, and increased Deferribacteres and Spirochaetes phyla components compared to uninfected mice. Interestingly, ZIKV infection triggered a significant increase in the abundance of bacteria from the Spirochaetaceae family in the gut microbiota. Lastly, we demonstrated that modulation of microbiota induced by ZIKV infection may lead to intestinal epithelium damage and intense leukocyte recruitment to the intestinal mucosa. Taken together, our data demonstrate that ZIKV infection can impact the gut microbiota composition and colon tissue homeostasis in adult immunocompetent mice.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yao Su ◽  
Hong-Kun Wang ◽  
Xu-Pei Gan ◽  
Li Chen ◽  
Yan-Nan Cao ◽  
...  

Abstract Background The causes of gestational diabetes mellitus (GDM) are still unclear. Recent studies have found that the imbalance of the gut microbiome could lead to disorders of human metabolism and immune system, resulting in GDM. This study aims to reveal the different gut compositions between GDM and normoglycemic pregnant women and find the relationship between gut microbiota and GDM. Methods Fecal microbiota profiles from women with GDM (n = 21) and normoglycemic women (n = 32) were assessed by 16S rRNA gene sequencing. Fasting metabolic hormone concentrations were measured using multiplex ELISA. Results Metabolic hormone levels, microbiome profiles, and inferred functional characteristics differed between women with GDM and healthy women. Additionally, four phyla and seven genera levels have different correlations with plasma glucose and insulin levels. Corynebacteriales (order), Nocardiaceae (family), Desulfovibrionaceae (family), Rhodococcus (genus), and Bacteroidetes (phylum) may be the taxonomic biomarkers of GDM. Microbial gene functions related to amino sugar and nucleotide sugar metabolism were found to be enriched in patients with GDM. Conclusion Our study indicated that dysbiosis of the gut microbiome exists in patients with GDM in the second trimester of pregnancy, and gut microbiota might be a potential diagnostic biomarker for the diagnosis, prevention, and treatment of GDM.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Jessica C. Ralston ◽  
Kathleen A.J. Mitchelson ◽  
Gina M. Lynch ◽  
Tam T.T. Tran ◽  
Conall R. Strain ◽  
...  

AbstractReduced inflammatory signaling (IL-1RI-/-) alters metabolic responses to dietary challenges (1). Inflammasome deficiency (e.g. IL-18-/-, Asc-/-) can modify gut microbiota concomitant with hepatosteatosis; an effect that was transferable to wild-type (WT) mice by co-housing (2). Taken together, this evidence suggests that links between diet, microbiota and IL-1RI-signaling can influence metabolic health. Our aim was to determine whether IL-1RI-mediated signaling interacted with the gut microbiome to impact metabolic tissue functionality in a diet-specific fashion. Male WT (C57BL/J6) and IL-1RI-/- mice were fed either high-fat diet (HFD; 45% kcal) or low-fat diet (LFD; 10% kcal) for 24 weeks and were housed i) separately by genotype or ii) with genotypes co-housed together (i.e. isolated vs shared microbial environment; n = 8–10 mice per group). Glucose tolerance and insulin secretion response (1.5 g/kg i.p.), gut microbiota composition and caecal short-chain fatty acids (SCFA) were assessed. Liver and adipose tissue were harvested and examined for triacylglycerol (TAG) formation, cholesterol and metabolic markers (Fasn, Cpt1α, Pparg, Scd1, Dgat1/2), using histology, gas-chromatography and RT-PCR, respectively. Statistical analysis included 1-way or 2-way ANOVA, where appropriate, with Bonferroni post-hoc correction. Co-housing significantly affected gut microbiota composition, illustrated by clustering in PCoA (unweighted UniFrac distance) of co-housed mice but not their single-housed counterparts, on both HFD and LFD. The taxa driving these differences were primarily from Lachnospiraceae and Ruminococcaceae families. Single-housed WT had lower hepatic weight, TAG, cholesterol levels and Fasn despite HFD, an effect lost in their co-housed counterparts, who aligned more to IL-1RI-/- hepatic lipid status. Hepatic Cpt1α was lowest in co-housed WT. Adipose from IL-1RI-/- groups on HFD displayed increased adipocyte size and reduced adipocyte number compared to WT groups, but greater lipogenic potential (Pparg, Scd1, Dgat2) alongside a blunted IL-6 response to pro-inflammatory stimuli (~32%, P = 0.025). Whilst caecal SCFA concentrations were not different between groups, single-housed IL-1RI-/- adipocytes showed greatest sensitivity to SCFA-induced lipogenesis. Interestingly, differences in tissue functionality and gut microbiome occurred despite unaltered glucose tolerance; although there was a trend for phenotypic transfer of body weight via co-housing. For all endpoints examined, similar genotype/co-housing effects were observed for both HFD and LFD with the greatest impacts seen in HFD-fed mice. In conclusion, while the gut microbiome may be an important consideration in dietary interventions, these results question the magnitude of its impact in relation to the IL-1RI-dependent immunometabolism-glucose homeostasis axis.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 748 ◽  
Author(s):  
Jin-Young Lee ◽  
Mohamed Mannaa ◽  
Yunkyung Kim ◽  
Jehun Kim ◽  
Geun-Tae Kim ◽  
...  

The aim of this study was to investigate differences between the gut microbiota composition in patients with rheumatoid arthritis (RA) and those with osteoarthritis (OA). Stool samples from nine RA patients and nine OA patients were collected, and DNA was extracted. The gut microbiome was assessed using 16S rRNA gene amplicon sequencing. The structures and differences in the gut microbiome between RA and OA were analyzed. The analysis of diversity revealed no differences in the complexity of samples. The RA group had a lower Bacteroidetes: Firmicutes ratio than did the OA group. Lactobacilli and Prevotella, particularly Prevotella copri, were more abundant in the RA than in the OA group, although these differences were not statistically significant. The relative abundance of Bacteroides and Bifidobacterium was lower in the RA group. At the species level, the abundance of certain bacterial species was significantly lower in the RA group, such as Fusicatenibacter saccharivorans, Dialister invisus, Clostridium leptum, Ruthenibacterium lactatiformans, Anaerotruncus colihominis, Bacteroides faecichinchillae, Harryflintia acetispora, Bacteroides acidifaciens, and Christensenella minuta. The microbial properties of the gut differed between RA and OA patients, and the RA dysbiosis revealed results similar to those of other autoimmune diseases, suggesting that a specific gut microbiota pattern is related to autoimmunity.


2017 ◽  
Vol 84 (5) ◽  
Author(s):  
M. Andrea Azcarate-Peril ◽  
Natasha Butz ◽  
Maria Belen Cadenas ◽  
Matthew Koci ◽  
Anne Ballou ◽  
...  

ABSTRACT Salmonella is estimated to cause one million foodborne illnesses in the United States every year. Salmonella -contaminated poultry products are one of the major sources of salmonellosis. Given the critical role of the gut microbiota in Salmonella transmission, a manipulation of the chicken intestinal microenvironment could prevent animal colonization by the pathogen. In Salmonella , the global regulator gene fnr ( f umarate n itrate r eduction) regulates anaerobic metabolism and is essential for adapting to the gut environment. This study tested the hypothesis that an attenuated Fnr mutant of Salmonella enterica serovar Typhimurium (attST) or prebiotic galacto-oligosaccharides (GOS) could improve resistance to wild-type Salmonella via modifications to the structure of the chicken gut microbiome. Intestinal samples from a total of 273 animals were collected weekly for 9 weeks to evaluate the impact of attST or prebiotic supplementation on microbial species of the cecum, duodenum, jejunum, and ileum. We next analyzed changes to the gut microbiome induced by challenging the animals with a wild-type Salmonella serovar 4,[5],12:r:− (Nal r ) strain and determined the clearance rate of the virulent strain in the treated and control groups. Both GOS and the attenuated Salmonella strain modified the gut microbiome but elicited alterations of different taxonomic groups. The attST produced significant increases of Alistipes and undefined Lactobacillus , while GOS increased Christensenellaceae and Lactobacillus reuteri . The microbiome structural changes induced by both treatments resulted in a faster clearance after a Salmonella challenge. IMPORTANCE With an average annual incidence of 13.1 cases/100,000 individuals, salmonellosis has been deemed a nationally notifiable condition in the United States by the Centers for Disease Control and Prevention (CDC). Earlier studies demonstrated that Salmonella is transmitted by a subset of animals (supershedders). The supershedder phenotype can be induced by antibiotics, ascertaining an essential role for the gut microbiota in Salmonella transmission. Consequently, modulation of the gut microbiota and modification of the intestinal microenvironment could assist in preventing animal colonization by the pathogen. Our study demonstrated that a manipulation of the chicken gut microbiota by the administration of an attenuated Salmonella strain or prebiotic galacto-oligosaccharides (GOS) can promote resistance to Salmonella colonization via increases of beneficial microorganisms that translate into a less hospitable gut microenvironment.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3276-3276
Author(s):  
Wenli Liu ◽  
Janyce A Sugui ◽  
Hongzhen Li ◽  
Kyung J Kwon-Chung ◽  
Griffin P. Rodgers

Abstract Abstract 3276 Introduction: Chronic granulomatous disease (CGD) patients have recurrent life-threating bacterial and fungal infections due to the mutation of one of four subunits of the respiratory burst oxidase (NADPH-oxidase). Currently, the overall fatality rate in CGD patients remains high, making it necessary to better understand the basic biological processes governing host defense against bacteria and fungi in CGD. Olfactomedin 4 (OLFM4) is a neutrophil granule protein, which has been recently identified as a negative regulator of host innate immunity against bacteria infection in mice through modulation of neutrophil protease activity. The goal of this study was to evaluate the impact of OLFM4 deletion on host innate immunity against Staphylococcus aureus and Aspergillus fumigatus, two major pathogens encountered in CGD patients, in a murine X-linked CGD model. Results: We created gp91phox-and OLFM4-double deficient mice and investigated the mice defense against S. aureus and A. fumigatus infection. We found that neutrophil intracellular killing and in vivo clearance of S. aureus have been significantly increased in gp91phox- and OLFM4-double deficiency mice compared with CGD mice. The mice survival to S. aureus sepsis in gp91phox- and OLFM4-double deficiency mice has also been significantly prolonged compared with CGD mice. Our study has shown that the CGD mice immune deficiency against S. aureus has been totally corrected by additional loss of OLFM4 gene. To explore the mechanism that OLFM4 deletion rescued the bactericidal activities of CGD neutrophils, we analyzed cathepsin C and its downstream protease (neutrophil elastase and cathepsin G) activities in the mice neutrophils. Cathepsin C activities in OLFM4 deficient as well as double deficient mice neutrophils were significantly higher than those in WT mouse neutrophils. Cathepsin C activities in the neutrophils of CGD were similar to those in WT mice. Accordingly, the elastase and cathepsin G activities in the neutrophils of OLFM4 deficient and double deficient mice were also substantially higher than those in WT mice as well as CGD mice. However, we have not observed enhanced innate immunity against A. fumigatus in OLFM4 deficiency mice compared with wild-type mice using a lung infection model. The lung histopathology showed similar inflammation and fungal burden in the OLFM4 deficiency mice compared with wild-type mice. Correspondingly, mice survival to severe A. fumigatus infection did not show significant difference in gp91phox- and OLFM4-double deficiency mice compared with CGD mice, suggesting that OLFM4 may not play a role in mice host defense against A. fumigatus. Conclusion: 1. The damaged neutrophil bacterial killing and host innate immunity against S. aureus in CGD mice due to oxidative mechanism deficiency could be successfully rescued by deletion of OLFM4. 2. These results showed that the granule protease activities in CGD neutrophils could be substantially enhanced above the level in normal neutrophils by deletion of OLFM4, suggesting that the increased of serine proteinase activities due to OLFM4 deletion is NADPH-independent. 3. OLFM4 may not play a role in mice host defense against pulmonary A. fumigatus infection. 4. OLFM4 might prove to be an important target in CGD patients to augment host defense against bacterial infection. Disclosures: No relevant conflicts of interest to declare.


Immuno ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 583-594
Author(s):  
Takehiro Hirano ◽  
Hiroshi Nakase

The gut microbiota has diverse microbial components, including bacteria, viruses, and fungi. The interaction between gut microbiome components and immune responses has been studied extensively over the last decade. Several studies have reported the potential role of the gut microbiome in maintaining gut homeostasis and the development of disease. The commensal microbiome can preserve the integrity of the mucosal barrier by acting on the host immune system. Contrastingly, dysbiosis-induced inflammation can lead to the initiation and progression of several diseases through inflammatory processes and oxidative stress. In this review, we describe the multifaceted effects of the gut microbiota on several diseases from the perspective of mucosal immunological responses.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiangjun Liu ◽  
Ye Cheng ◽  
Dan Zang ◽  
Min Zhang ◽  
Xiuhua Li ◽  
...  

The influence of microbiota on host health and disease has attracted adequate attention, and gut microbiota components and microbiota-derived metabolites affect host immune homeostasis locally and systematically. Some studies have found that gut dysbiosis, disturbance of the structure and function of the gut microbiome, disrupts pulmonary immune homeostasis, thus leading to increased disease susceptibility; the gut-lung axis is the primary cross-talk for this communication. Gut dysbiosis is involved in carcinogenesis and the progression of lung cancer through genotoxicity, systemic inflammation, and defective immunosurveillance. In addition, the gut microbiome harbors the potential to be a novel biomarker for predicting sensitivity and adverse reactions to immunotherapy in patients with lung cancer. Probiotics and fecal microbiota transplantation (FMT) can enhance the efficacy and depress the toxicity of immune checkpoint inhibitors by regulating the gut microbiota. Although current studies have found that gut microbiota closely participates in the development and immunotherapy of lung cancer, the mechanisms require further investigation. Therefore, this review aims to discuss the underlying mechanisms of gut microbiota influencing carcinogenesis and immunotherapy in lung cancer and to provide new strategies for governing gut microbiota to enhance the prevention and treatment of lung cancer.


Sign in / Sign up

Export Citation Format

Share Document