scholarly journals Prevention and partial reversion of the lupus phenotype in ABIN1[D485N] mice by an IRAK4 inhibitor

2021 ◽  
Vol 8 (1) ◽  
pp. e000573
Author(s):  
Tsvetana Petrova ◽  
Sambit K Nanda ◽  
Cheryl Scudamore ◽  
Stephen W Wright ◽  
Vikram R Rao ◽  
...  

ObjectiveWe have reported previously that the IRAK4 inhibitor PF06426779 given to ubiquitin-binding-defective ABIN1[D485N] mice at 6 weeks of age prevents the major facets of lupus that develop 10 weeks later. The present study was undertaken to investigate whether PF06426779 could reverse the lupus phenotype when administered to 13-week-old ABIN1[D485N] mice that had already developed symptoms of lupus.MethodsSplenomegaly, the number of splenic neutrophils, TFH and Germinal Centre B (GCB) cells, serum levels of immunoglobulins, the extent of kidney, liver and lung pathology, and glomerular IgA and IgM were measured after feeding 13-week-old ABIN1[D485N] and wild-type mice for another 10 weeks with R&M3 diet with and without PF06426779 (4 g/kg).ResultsFollowing drug treatment, spleen size and weight, splenic neutrophil numbers, and serum IgA and glomerular IgA levels of ABIN1[D485N] mice returned to those seen in wild-type mice. The rise in splenic TFH and GCB numbers, the increase in kidney and liver pathology, and the concentrations of serum IgG1, IgG2A and IgE between 13 and 23 weeks were suppressed. There was no reduction in the level of anti-self double-stranded DNA, anti-self nuclear antigens or IgM during the drug treatment.ConclusionsThe results demonstrate the therapeutic potential of IRAK4 inhibitors for the treatment of lupus and raise the possibility of monitoring efficacy by measuring decreases in the serum levels of IgA. Our results support the view that there may be a closer connection between lupus and IgA nephropathy than realised previously.

2000 ◽  
Vol 191 (12) ◽  
pp. 2171-2182 ◽  
Author(s):  
Abdalla Rifai ◽  
Kim Fadden ◽  
Sherie L. Morrison ◽  
Koteswara R. Chintalacharuvu

Human immunoglobulin (Ig)A exists in blood as two isotypes, IgA1 and IgA2, with IgA2 present as three allotypes: IgA2m(1), IgA2m(2), and IgA2m(n). We now demonstrate that recombinant, chimeric IgA1 and IgA2 differ in their pharmacokinetic properties. The major pathway for the clearance of all IgA2 allotypes is the liver. Liver-mediated uptake is through the asialoglycoprotein receptor (ASGR), since clearance can be blocked by injection of excess galactose-Ficoll ligand and suppressed in ASGR-deficient mice. In contrast, only a small percentage of IgA1 is cleared through this pathway. The clearance of IgA1 lacking the hinge region with its associated O-linked carbohydrate was more rapid than that of wild-type IgA1. IgA1 and IgA2 that are not rapidly eliminated by the ASGR are both removed through an undefined ASGR-independent pathway with half-lives of 14 and 10 h, respectively. The rapid clearance of IgA2 but not IgA1 through the liver may in part explain why the serum levels of IgA1 are greater than those of IgA2. In addition, dysfunction of the ASGR or altered N-linked glycosylation, but not O-glycans, that affects recognition by this receptor may account for the elevated serum IgA seen in liver disease and IgA nephropathy.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3827
Author(s):  
Jae Young Hur ◽  
Kye Young Lee

Extracellular vesicles (EVs) carry RNA, proteins, lipids, and diverse biomolecules for intercellular communication. Recent studies have reported that EVs contain double-stranded DNA (dsDNA) and oncogenic mutant DNA. The advantage of EV-derived DNA (EV DNA) over cell-free DNA (cfDNA) is the stability achieved through the encapsulation in the lipid bilayer of EVs, which protects EV DNA from degradation by external factors. The existence of DNA and its stability make EVs a useful source of biomarkers. However, fundamental research on EV DNA remains limited, and many aspects of EV DNA are poorly understood. This review examines the known characteristics of EV DNA, biogenesis of DNA-containing EVs, methylation, and next-generation sequencing (NGS) analysis using EV DNA for biomarker detection. On the basis of this knowledge, this review explores how EV DNA can be incorporated into diagnosis and prognosis in clinical settings, as well as gene transfer of EV DNA and its therapeutic potential.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sabrina Dietz ◽  
Miguel Vasconcelos Almeida ◽  
Emily Nischwitz ◽  
Jan Schreier ◽  
Nikenza Viceconte ◽  
...  

AbstractTelomeres are bound by dedicated proteins, which protect them from DNA damage and regulate telomere length homeostasis. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to identify TEBP-1 and TEBP-2, two paralogs expressed in the germline and embryogenesis that associate to telomeres in vitro and in vivo. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a Mortal Germline. Notably, tebp-1;tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. Furthermore, we show that POT-1 forms a telomeric complex with TEBP-1 and TEBP-2, which bridges TEBP-1/-2 with POT-2/MRT-1. These results provide insights into the composition and organization of a telomeric protein complex in C. elegans.


Author(s):  
Pooja Madki ◽  
Mandya Lakshman Avinash Tejasvi ◽  
Geetha Paramkusam ◽  
Ruheena Khan ◽  
Shilpa J.

Abstract Objectives The aim of the present study is to evaluate the role of immunoglobulins (IgA, IgG, and IgM) and circulating immune complexes (CIC) as tumor marker in oral cancer and precancer patients. Materials and Methods The present study was performed on 45 individuals subdivided into three groups, that is, oral precancer, oral cancer and healthy individuals, and levels of immunoglobulins, and CIC was estimated by turbidometry and ELISA method. Results In the present study, the mean serum IgA levels in oral precancer were 161.00 ( ±  118.02) mg/dL, oral cancers were 270.67 ( ±  171.44) mg/dL, and controls were 133.73 ( ±  101.31) mg/dL. Mean serum levels of IgG in oral precancer were 1,430.87 ( ±  316) mg/dL, oral cancers were 1,234.27 ( ±  365.42) mg/dL, and controls were 593.87 ( ±  323.06) mg/dL. Conclusion We found that the levels of serum IgG and IgA were elevated consistently in precancer and cancer group, and Serum IgM levels were increased only in precancer. Also, significant increase in serum CIC levels were seen in oral precancer and cancer group on comparison with control.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 615
Author(s):  
Shang-En Huang ◽  
Erna Sulistyowati ◽  
Yu-Ying Chao ◽  
Bin-Nan Wu ◽  
Zen-Kong Dai ◽  
...  

Osteoarthritis is a degenerative arthropathy that is mainly characterized by dysregulation of inflammatory responses. KMUP-1, a derived chemical synthetic of xanthine, has been shown to have anti-inflammatory and antioxidant properties. Here, we aimed to investigate the in vitro anti-inflammatory and in vivo anti-osteoarthritis effects of KMUP-1. Protein and gene expressions of inflammation markers were determined by ELISA, Western blotting and microarray, respectively. RAW264.7 mouse macrophages were cultured and pretreated with KMUP-1 (1, 5, 10 μM). The productions of TNF-α, IL-6, MMP-2 and MMP- 9 were reduced by KMUP-1 pretreatment in LPS-induced inflammation of RAW264.7 cells. The expressions of iNOS, TNF-α, COX-2, MMP-2 and MMP-9 were also inhibited by KMUP-1 pretreatment. The gene expression levels of TNF and COX families were also downregulated. In addition, KMUP-1 suppressed the activations of ERK, JNK and p38 as well as phosphorylation of IκBα/NF-κB signaling pathways. Furthermore, SIRT1 inhibitor attenuated the inhibitory effect of KMUP-1 in LPS-induced NF-κB activation. In vivo study showed that KMUP-1 reduced mechanical hyperalgesia in monoiodoacetic acid (MIA)-induced rats OA. Additionally, KMUP-1 pretreatment reduced the serum levels of TNF-α and IL-6 in MIA-injected rats. Moreover, macroscopic and histological observation showed that KMUP-1 reduced articular cartilage erosion in rats. Our results demonstrated that KMUP-1 inhibited the inflammatory responses and restored SIRT1 in vitro, alleviated joint-related pain and cartilage destruction in vivo. Taken together, KMUP-1 has the potential to improve MIA-induced articular cartilage degradation by inhibiting the levels and expression of inflammatory mediators suggesting that KMUP-1 might be a potential therapeutic agent for OA.


2016 ◽  
Vol 44 (06) ◽  
pp. 1111-1125 ◽  
Author(s):  
Muhammad Jahangir Hossen ◽  
Mi-Yeon Kim ◽  
Jae Youl Cho

Xanthium strumarium L. (Asteraceae), a traditional Chinese medicine, is prescribed to treat arthritis, bronchitis, and rhinitis. Although the plant has been used for many years, the mechanism by which it ameliorates various inflammatory diseases is not yet fully understood. To explore the anti-inflammatory mechanism of methanol extracts of X. strumarium (Xs-ME) and its therapeutic potential, we used lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 cells and human monocyte-like U937 cells as well as a LPS/D-galactosamine (GalN)-induced acute hepatitis mouse model. To find the target inflammatory pathway, we used holistic immunoblotting analysis, reporter gene assays, and mRNA analysis. Xs-ME significantly suppressed the up-regulation of both the activator protein (AP)-1-mediated luciferase activity and the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1[Formula: see text], IL-6, and tumor necrosis factor (TNF)-[Formula: see text]. Moreover, Xs-ME strongly inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW264.7 and U937 cells. Additionally, these results highlighted the hepatoprotective and curative effects of Xs-ME in a mouse model of LPS/D-GalN-induced acute liver injury, as assessed by elevated serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and histological damage. Therefore, our results strongly suggest that the ethnopharmacological roles of Xs-ME in hepatitis and other inflammatory diseases might result from its inhibitory activities on the inflammatory signaling of MAPK and AP-1.


2018 ◽  
Vol 32 ◽  
pp. 205873841881863
Author(s):  
Ming-wei Liu ◽  
Yun-qiao Huang ◽  
Ya-ping Qu ◽  
Dong-mei Wang ◽  
Deng-yun Tang ◽  
...  

Panax notoginseng saponins are extracted from Chinese ginseng— Panax notoginseng Ledeb—and are known to have therapeutic anti-inflammatory effects. However, the precise mechanism behind their anti-inflammatory effects remains relatively unknown. To better understand how Panax notoginseng saponins exert their therapeutic benefit, we tested them in a rat model of severe acute pancreatitis (SAP). Rats received a tail vein injection of Panax notoginseng saponins and were administered 5% sodium taurocholate 2 h later. Pancreatic tissue was then harvested and levels of miR-181b, FSTL1, TREM1, TLR4, TRAF6, IRAK1, p-Akt, p-p38MAPK, NF-κBp65, and p-IκB-α were determined using Western blot and quantitative real-time polymerase chain reaction (qRT-PCR). Enzyme-linked immunosorbent assays were used to determine serum levels of tumor necrosis factor-α (TNF-α), TREM1, interleukin (IL)-6, ACAM-1, IL-8, and IL-12 and DNA-bound levels of NF-KB65 and TLR4 in pancreatic and ileum tissue. Serum levels of lipase and amylase, pancreatic myeloperoxidase (MPO) activity, and pancreatic water content were also measured. Hematoxylin and eosin staining was used for all histological analyses. Results indicated upregulation of miR-181b, but negligible levels of FSTL1, p-p38MAPK, TLR4, TRAF6, p-Akt, IRAK1, TREM1, p-NF-κBp65, and p-IκB-α, as well as negligible DNA-bound levels of NF-KB65 and TLR4. We also observed lower levels of IL-8, IL-6, ACAM-1, TNF-α, MPO, and IL-12 in the Panax notoginseng saponin–treated group when compared with controls. In addition, Panax notoginseng saponin–treated rats had significantly reduced serum levels of lipase and amylase. Histological analyses confirmed that Panax notoginseng saponin treatment significantly reduced taurocholate-induced pancreatic inflammation. Collectively, our results suggest that Panax notoginseng saponin treatment attenuated acute pancreatitis and pancreatic inflammation by increasing miR-181b signaling. These findings suggest that Panax notoginseng saponins have therapeutic potential in the treatment of taurocholate-induced SAP.


2020 ◽  
Author(s):  
Yuto Tamura ◽  
Tamihiro Kawakami ◽  
Yupeng Dong ◽  
Miku Yoshinari ◽  
Yuka Nishibata ◽  
...  

Abstract Objective. It was previously demonstrated that cutaneous vasculitis, including IgA vasculitis and cutaneous arteritis (CA), is associated with the presence of IgM antibodies (Abs) against the phosphatidylserine/prothrombin complex (PS/PT). Recently, novel enzyme-linked immunosorbent assay kits for the detection of IgG and IgM anti-PS/PT (aPS/PT) Abs have become commercially available.Methods. The prevalence of serum IgG and IgM aPS/PT Abs in both cutaneous and systemic vasculitis was determined using these kits. In addition, to examine whether aPS/PT Abs were involved in the pathogenesis of cutaneous vasculitis, inbred wild-type rats were intravenously administered with a rat IgM class aPS/PT monoclonal Ab established previously or with rat immunoglobulins as controls. To express PS on the surface of vascular endothelium, these rats were given a subcutaneous injection of cell-free histones (250 µg/ml, 300 µl/site) 2 hours in advance. Results. Serum IgM aPS/PT Ab levels were elevated in patients with systemic vasculitis with skin involvement and CA compared to those in patients with systemic vasculitis without skin involvement and healthy controls. There was no significant difference in the serum levels of IgG aPS/PT Abs between the patients and healthy controls. Correspondingly, inbred wild-type rats intravenously administered with the aPS/PT monoclonal IgM Ab after appropriate priming—subcutaneous histone injection—developed cutaneous vasculitis. Some rats given rat IgM instead of the aPS/PT monoclonal Ab also developed cutaneous vasculitis, whereas vasculitis did not occur in rats given IgG or only priming by histones. Conclusion. IgM aPS/PT Abs could be involved in the pathogenesis of cutaneous vasculitis.


2019 ◽  
Author(s):  
Mariano Avino ◽  
Emmanuel Ndashimye ◽  
Daniel J. Lizotte ◽  
Abayomi S. Olabode ◽  
Richard M. Gibson ◽  
...  

AbstractThe global HIV-1 pandemic comprises many genetically divergent subtypes. Most of our understanding of drug resistance in HIV-1 derives from subtype B, which predominates in North America and western Europe. However, about 90% of the pandemic represents non-subtype B infections. Here, we use deep sequencing to analyze HIV-1 from infected individuals in Uganda who were either treatment-naïve or who experienced virologic failure on ART without the expected patterns of drug resistance. Our objective was to detect potentially novel associations between mutations in HIV-1 integrase and treatment outcomes in Uganda, where most infections are subtypes A or D. We retrieved a total of 380 archived plasma samples from patients at the Joint Clinical Research Centre (Kampala), of which 328 were integrase inhibitor-naïve and 52 were raltegravir (RAL)-based treatment failures. Next, we developed a bioinformatic pipeline for alignment and variant calling of the deep sequence data obtained from these samples from a MiSeq platform (Illumina). To detect associations between within-patient polymorphisms and treatment outcomes, we used a support vector machine (SVM) for feature selection with multiple imputation to account for partial reads and low quality base calls. Candidate point mutations of interest were experimentally introduced into the HIV-1 subtype B NL4-3 backbone to determine susceptibility to RAL in U87.CD4.CXCR4 cells. Finally, we carried out replication capacity experiments with wild-type and mutant viruses in TZM-bl cells in the presence and absence of RAL. Our analyses not only identified the known major mutation N155H and accessory mutations G163R and V151I, but also novel mutations I203M and I208L as most highly associated with RAL failure. The I203M and I208L mutations resulted in significantly decreased susceptibility to RAL (44.0-fold and 54.9-fold, respectively) compared to wild-type virus (EC50=0.32 nM), and may represent novel pathways of HIV-1 resistance to modern treatments.Author summaryThere are many different types of HIV-1 around the world. Most of the research on how HIV-1 can become resistant to drug treatment has focused on the type (B) that is the most common in high-income countries. However, about 90% of infections around the world are caused by a type other than B. We used next-generation sequencing to analyze samples of HIV-1 from patients in Uganda (mostly infected by types A and D) for whom drug treatment failed to work, and whose infections did not fit the classic pattern of adaptation based on B. Next, we used machine learning to detect mutations in these virus populations that could explain the treatment outcomes. Finally, we experimentally added two candidate mutations identified by our analysis to a laboratory strain of HIV-1 and confirmed that they conferred drug resistance to the virus. Our study reveals new pathways that other types of HIV-1 may use to evolve resistance to drugs that make up the current recommended treatment for newly diagnosed individuals.


Sign in / Sign up

Export Citation Format

Share Document