Gas exchange and growth of three arctic tree-line tree species under different soil temperature and drought preconditioning regimes

1996 ◽  
Vol 74 (5) ◽  
pp. 686-693 ◽  
Author(s):  
Simon M. Landhäusser ◽  
Ross W. Wein ◽  
Petra Lange

Low soil temperatures and water availability are thought to be major factors determining the distribution of tree species at the arctic tree line. A comparative study examined the response of Betula papyrifera, Populus balsamifera, and Picea mariana seedlings to different soil temperatures and drought regimes in a growth chamber experiment. Morphological and ecophysiological responses (net assimilation rate, stomatal conductance to water vapour, and residual conductance) of these tree line tree species were measured and compared. Mean biomass accumulation of the deciduous species was greater than that of Picea mariana with increasing soil temperatures. Root biomass showed an increase of 30% in the three species between the soil temperatures of 3 and 15 °C. Response of ecophysiological variables to increased soil temperature was greater in B. papyrifera and Populus balsamifera than in Picea mariana. In a second experiment, drought-preconditioned B. papyrifera and Populus balsamifera seedlings were subjected to a 6-day water-withholding treatment. Drought decreased shoot mass and increased the root to shoot ratio equally in B. papyrifera and Populus balsamifera. Drought-preconditioned B. papyrifera and Populus balsamifera seedlings responded differently to the 6-day water-withholding treatment. Betula papyrifera used a water-conserving strategy and maintained low net assimilation rates and low water use after drought preconditioning, whereas in Populus balsamifera greater net assimilation rates were associated with drought preconditioning. These results are consistent with the distribution of these three tree species at the arctic tree line. Keywords: Picea mariana, Populus balsamifera, Betula papyrifera, drought preconditioning, soil temperature, arctic tree line.

2020 ◽  
Author(s):  
Niklas J. Wickander ◽  
Pil U. Rasmussen ◽  
Bryndís Marteinsdóttir ◽  
Johan Ehrlén ◽  
Ayco J. M. Tack

AbstractThe arctic and alpine regions are predicted to experience one of the highest rates of climate change, and the arctic vegetation is expected to be especially sensitive to such changes. Understanding the ecological and evolutionary responses of arctic plant species to changes in climate is therefore a key objective. Geothermal areas, where temperature gradients naturally occur over small spatial scales, and without many of the confounding environmental factors present in latitudinal and other gradient studies, provide a natural experimental setting to examine the impact of temperature on the response of arctic-alpine plants to increasing temperatures. To test the ecological and evolutionary response of the circumpolar alpine bistort (Bistorta vivipara) to temperature, we collected plant material and soil from areas with low, intermediate, and high soil temperatures and grew them in all combinations at three different temperatures. At higher experimental soil temperatures, sprouting was earlier, and plants had more leaves. Sprouting was earlier in soil originating from intermediate temperature and plants had more leaves when grown in soil originating from low temperatures. We did not find evidence of local adaptation or genetic variation in reaction norms among plants originating from areas with low, intermediate, and high soil temperature. Our findings suggest that the alpine bistort has a strong plastic response to warming, but that differences in soil temperature have not resulted in genetic differentiation. The lack of an observed evolutionary response may, for example, be due to the absence of temperature-mediated selection on B. vivipara, or high levels of gene flow balancing differences in selection. When placed within the context of other studies, we conclude that arctic-alpine plant species often show strong plastic responses to spring warming, while evidence of evolutionary responses varies among species.


2021 ◽  
Vol 13 (14) ◽  
pp. 2647
Author(s):  
Julia Tatum ◽  
David Wallin

Practical methods for tree species identification are important for both land management and scientific inquiry. LiDAR has been widely used for species mapping due to its ability to characterize 3D structure, but in structurally complex Pacific Northwest forests, additional research is needed. To address this need and to determine the feasibility of species modeling in such forests, we compared six approaches using five algorithms available in R’s lidR package and Trimble’s eCognition software to determine which approach most consistently identified individual trees across a heterogenous riparian landscape. We then classified segments into Douglas fir (Pseudotsuga menziesii), black cottonwood (Populus balsamifera ssp. trichocarpa), and red alder (Alnus rubra). Classification accuracies based on the best-performing segmentation method were 91%, 92%, and 84%, respectively. To our knowledge, this is the first study to investigate tree species modeling from LiDAR in a natural Pacific Northwest forest, and the first to model Pacific Northwest species at the landscape scale. Our results suggest that LiDAR alone may provide enough information on tree species to be useful to land managers in limited applications, even under structurally challenging conditions. With slight changes to the modeling approach, even higher accuracies may be possible.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 441
Author(s):  
Philipp Grabenweger ◽  
Branislava Lalic ◽  
Miroslav Trnka ◽  
Jan Balek ◽  
Erwin Murer ◽  
...  

A one-dimensional simulation model that simulates daily mean soil temperature on a daily time-step basis, named AGRISOTES (AGRIcultural SOil TEmperature Simulation), is described. It considers ground coverage by biomass or a snow layer and accounts for the freeze/thaw effect of soil water. The model is designed for use on agricultural land with limited (and mostly easily available) input data, for estimating soil temperature spatial patterns, for single sites (as a stand-alone version), or in context with agrometeorological and agronomic models. The calibration and validation of the model are carried out on measured soil temperatures in experimental fields and other measurement sites with various climates, agricultural land uses and soil conditions in Europe. The model validation shows good results, but they are determined strongly by the quality and representativeness of the measured or estimated input parameters to which the model is most sensitive, particularly soil cover dynamics (biomass and snow cover), soil pore volume, soil texture and water content over the soil column.


2007 ◽  
Vol 38 (3) ◽  
pp. 243-256 ◽  
Author(s):  
William H. Hendershot

ABSTRACT Thirteen soil profiles from northern Québec and Labrador, Canada, near the northern tree-line, were sampled and analysed. Five of these, located on poorly to imperfectly drained sites, are strongly cryoturbated soils with permafrost at a shallow depth. Below the surface horizon they have very uniform profile distributions of pH, carbon and extractable iron and aluminum due to the active mixing of the horizons. The eight soils from well-drained sites have profiles similar to those of soils in similar settings in more temperate climatic regions. One of these, developed in one of the most northerly valleys having a black spruce-larch forest vegetation, has the characteristics of a podzol (spodosol) except that the podzolic B (spodic) horizon is too thin. The other seven profiles all have color B horizons, although the coarse texture prevents their classification as cambic horizons; these soils all have carbon-rich A horizons varying in thickness from 1.5 to 20 cm. Soil temperature at 50 cm depth closely follows the elevational and latitudinal distribution of the soils; a range of 0 to 10° C was observed. Soil development, measured as depth of solum, organic carbon accumulation or degree of B horizon development, is closely related to soil temperature and site position. The presence of permanently frozen ice layers at shallow depth has a marked influence on soil genesis and the properties of the resultant soils.


2004 ◽  
Vol 8 (4) ◽  
pp. 706-716 ◽  
Author(s):  
K. Rankinen ◽  
T. Karvonen ◽  
D. Butterfield

Abstract. Microbial processes in soil are moisture, nutrient and temperature dependent and, consequently, accurate calculation of soil temperature is important for modelling nitrogen processes. Microbial activity in soil occurs even at sub-zero temperatures so that, in northern latitudes, a method to calculate soil temperature under snow cover and in frozen soils is required. This paper describes a new and simple model to calculate daily values for soil temperature at various depths in both frozen and unfrozen soils. The model requires four parameters: average soil thermal conductivity, specific heat capacity of soil, specific heat capacity due to freezing and thawing and an empirical snow parameter. Precipitation, air temperature and snow depth (measured or calculated) are needed as input variables. The proposed model was applied to five sites in different parts of Finland representing different climates and soil types. Observed soil temperatures at depths of 20 and 50 cm (September 1981–August 1990) were used for model calibration. The calibrated model was then tested using observed soil temperatures from September 1990 to August 2001. R2-values of the calibration period varied between 0.87 and 0.96 at a depth of 20 cm and between 0.78 and 0.97 at 50 cm. R2-values of the testing period were between 0.87 and 0.94 at a depth of 20cm, and between 0.80 and 0.98 at 50cm. Thus, despite the simplifications made, the model was able to simulate soil temperature at these study sites. This simple model simulates soil temperature well in the uppermost soil layers where most of the nitrogen processes occur. The small number of parameters required means that the model is suitable for addition to catchment scale models. Keywords: soil temperature, snow model


2015 ◽  
Vol 12 (1) ◽  
pp. 23-30 ◽  
Author(s):  
C. Bertrand ◽  
L. González Sotelino ◽  
M. Journée

Abstract. Soil temperatures at various depths are unique parameters useful to describe both the surface energy processes and regional environmental and climate conditions. To provide soil temperature observation in different regions across Belgium for agricultural management as well as for climate research, soil temperatures are recorded in 13 of the 20 automated weather stations operated by the Royal Meteorological Institute (RMI) of Belgium. At each station, soil temperature can be measured at up to 5 different depths (from 5 to 100 cm) in addition to the bare soil and grass temperature records. Although many methods have been developed to identify erroneous air temperatures, little attention has been paid to quality control of soil temperature data. This contribution describes the newly developed semi-automatic quality control of 10-min soil temperatures data at RMI.


Polar Science ◽  
2021 ◽  
pp. 100732
Author(s):  
Mohammad Akhsanul Islam ◽  
Raed Lubbad ◽  
Seyed Ali Ghoreishian Amiri ◽  
Vladislav Isaev ◽  
Yaroslav Shevchuk ◽  
...  

2021 ◽  
pp. 1-10
Author(s):  
X.M. Yang ◽  
W.D. Reynolds ◽  
C.F. Drury ◽  
M.D. Reeb

Although it is well established that soil temperature has substantial effects on the agri-environmental performance of crop production, little is known of soil temperatures under living cover crops. Consequently, soil temperatures under a crimson clover and white clover mix, hairy vetch, and red clover were measured for a cool, humid Brookston clay loam under a corn–soybean–winter wheat/cover crop rotation. Measurements were collected from August (after cover crop seeding) to the following May (before cover crop termination) at 15, 30, 45, and 60 cm depths during 2018–2019 and 2019–2020. Average soil temperatures (August–May) were not affected by cover crop species at any depth, or by air temperature at 60 cm depth. During winter, soil temperatures at 15, 30, and 45 cm depths were greater under cover crops than under a no cover crop control (CK), with maximum increase occurring at 15 cm on 31 January 2019 (2.5–5.7 °C) and on 23 January 2020 (0.8–1.9 °C). In spring, soil temperatures under standing cover crops were cooler than the CK by 0.1–3.0 °C at 15 cm depth, by 0–2.4 °C at the 30 and 45 cm depths, and by 0–1.8 °C at 60 cm depth. In addition, springtime soil temperature at 15 cm depth decreased by about 0.24 °C for every 1 Mg·ha−1 increase in live cover crop biomass. Relative to bare soil, cover crops increased near-surface soil temperature during winter but decreased near-surface soil temperature during spring. These temperature changes may have both positive and negative effects on the agri-environmental performance of crop production.


2013 ◽  
Vol 10 (7) ◽  
pp. 4465-4479 ◽  
Author(s):  
K. L. Hanis ◽  
M. Tenuta ◽  
B. D. Amiro ◽  
T. N. Papakyriakou

Abstract. Ecosystem-scale methane (CH4) flux (FCH4) over a subarctic fen at Churchill, Manitoba, Canada was measured to understand the magnitude of emissions during spring and fall shoulder seasons, and the growing season in relation to physical and biological conditions. FCH4 was measured using eddy covariance with a closed-path analyser in four years (2008–2011). Cumulative measured annual FCH4 (shoulder plus growing seasons) ranged from 3.0 to 9.6 g CH4 m−2 yr−1 among the four study years, with a mean of 6.5 to 7.1 g CH4 m−2 yr−1 depending upon gap-filling method. Soil temperatures to depths of 50 cm and air temperature were highly correlated with FCH4, with near-surface soil temperature at 5 cm most correlated across spring, fall, and the shoulder and growing seasons. The response of FCH4 to soil temperature at the 5 cm depth and air temperature was more than double in spring to that of fall. Emission episodes were generally not observed during spring thaw. Growing season emissions also depended upon soil and air temperatures but the water table also exerted influence, with FCH4 highest when water was 2–13 cm below and lowest when it was at or above the mean peat surface.


2005 ◽  
Vol 35 (11) ◽  
pp. 2671-2678 ◽  
Author(s):  
N Stenvall ◽  
T Haapala ◽  
S Aarlahti ◽  
P Pulkkinen

Root cuttings from five clones of hybrid aspen (Populus tremula L. × Populus tremuloides Michx.) obtained from 2-year-old stock plants were grown in a peat–sand mixture (soil) at four soil temperatures (18, 22, 26, and 30 °C). Half of the cuttings were grown in light and the rest in darkness. The root cuttings that were grown at the highest soil temperature sprouted and rooted significantly better than the cuttings grown at the lower temperatures. Light did not affect the sprouting of root cuttings but did have a negative effect on their rooting. Moreover, the clones varied significantly in sprouting and rooting percentages, as well as in the time required for sprouting. In general, higher soil temperatures hastened sprouting of the cuttings. Sprouting was also faster in the light than in the dark treatment. Differences in soil temperature, light conditions, or clone had no significant effect on rooting time.


Sign in / Sign up

Export Citation Format

Share Document