scholarly journals Antimicrobial use in swine production and its effect on the swine gut microbiota and antimicrobial resistance

2015 ◽  
Vol 61 (11) ◽  
pp. 785-798 ◽  
Author(s):  
Devin B. Holman ◽  
Martin R. Chénier

Antimicrobials have been used in swine production at subtherapeutic levels since the early 1950s to increase feed efficiency and promote growth. In North America, a number of antimicrobials are available for use in swine. However, the continuous administration of subtherapeutic, low concentrations of antimicrobials to pigs also provides selective pressure for antimicrobial-resistant bacteria and resistance determinants. For this reason, subtherapeutic antimicrobial use in livestock remains a source of controversy and concern. The swine gut microbiota demonstrates a number of changes in response to antimicrobial administration depending on the dosage, duration of treatment, age of the pigs, and gut location that is sampled. Both culture-independent and -dependent studies have also shown that the swine gut microbiota contains a large number of antimicrobial resistance determinants even in the absence of antimicrobial exposure. Heavy metals, such as zinc and copper, which are often added at relatively high doses to swine feed, may also play a role in maintaining antimicrobial resistance and in the stability of the swine gut microbiota. This review focuses on the use of antimicrobials in swine production, with an emphasis on the North American regulatory context, and their effect on the swine gut microbiota and on antimicrobial resistance determinants in the gut microbiota.

Author(s):  
Dominic Poulin-Laprade ◽  
Jean-Simon Brouard ◽  
Nathalie Gagnon ◽  
Annie Turcotte ◽  
Alexandra Langlois ◽  
...  

Pigs are major reservoirs of resistant Enterobacteriaceae that can reach humans through consumption of contaminated meat or vegetables grown in manure-fertilized soil. Samples were collected from sows during lactation and their piglets at five time points spanning the production cycle. Cefotaxime-resistant bacteria were quantified and isolated from feed, feces, manures and carcasses of pigs reared with penicillin-using or antibiotic-free husbandries. The isolates were characterized by antibiotic susceptibility testing, whole genome sequencing and conjugation assays. The extended spectrum β-lactamase (ESBL) phenotype was more frequent in isolates originating from antibiotic-free animals, while the bacteria isolated from penicillin-using animals were on average resistant to a greater number of antibiotics. The ESBL-encoding genes identified were blaCTX-M-1, blaCTX-M-15 and blaCMY-2 and they co-localised on plasmids with various genes encoding resistance to ß-lactams, co-trimoxazole, phenicols and tetracycline, all antibiotics used in pig production. Groups of genes conferring the observed resistance and the mobile elements disseminating multidrug resistance were determined. The observed resistance to ß-lactams was mainly due to the complementary actions of penicillin-binding proteins, an efflux pump and ß-lactamases. Most resistance determinants were shared by animals raised with or without antimicrobials. This suggests a key contribution of indigenous enterobacteria maternally transmitted along the sow lineage, regardless of antimicrobial use. It is unclear if the antimicrobial resistance observed in the enterobacteria populations of the commercial pig herds studied were present before the use of antibiotics, or the extent to which historical antimicrobial use exerted a selective pressure defining the resistant bacterial populations in farms using penicillin prophylaxis. Importance: Antimicrobial resistance is a global threat that needs to be fought on numerous fronts along the One Health continuum. Vast quantities of antimicrobials are used in agriculture to ensure animal welfare and productivity, and are arguably a driving force for the persistence of environmental and food-borne resistant bacteria. This study evaluated the impact of conventional, organic and other antibiotic-free husbandry practices on the frequency and nature of antimicrobial resistance genes and multidrug resistant enterobacteria. It provides knowledge about the relative contribution of specific resistance determinants to observed antibiotic resistance. It also showed the clear co-selection of genes coding for extended-spectrum beta-lactamases and genes coding for the resistance to antibiotics commonly used for prophylaxis or in curative treatments in pig operations.


Author(s):  
John W. Schmidt ◽  
Amit Vikram ◽  
Enrique Doster ◽  
Kevin Thomas ◽  
Margaret D Weinroth ◽  
...  

Antibiotics used during food-animal production account for approximately 77% of U.S. antimicrobial consumption by mass. Ground beef products labeled as raised without antibiotics (RWA) are perceived to harbor lower antimicrobial resistance (AMR) levels than conventional (CONV) products with no label claims regarding antimicrobial use. Retail ground beef samples were obtained from 6 U. S. cities. Samples with a RWA or USDA Organic claim ( N = 299) were assigned to the RWA production system. Samples lacking these claims ( N = 300) were assigned to the CONV production system. Each sample was cultured for the detection of five antimicrobial resistant bacteria. Genomic DNA was isolated from each sample and qPCR was used to determine the abundance of ten antimicrobial resistance genes (ARGs). Tetracycline-resistant Escherichia coli (CONV = 46.3%; RWA = 34.4%, P < 0.01) and erythromycin-resistant Enterococcus (CONV = 48.0%; RWA = 37.5%, P = 0.01) were more frequently detected in CONV. Salmonella were detected in 1.2% of samples. The ARG bla CTX-M (CONV = 4.1 log 10 normalized abundance, RWA = 3.8 log 10 normalized abundance, P < 0.01) was more abundant in CONV ground beef. The ARGs mecA (CONV = 4.4 log 10 normalized abundance, RWA = 4.9 log 10 normalized abundance, P = 0.05), tet (A) (CONV = 3.9 log 10 normalized abundance, RWA = 4.5 log 10 normalized abundance, P < 0.01), tet (B) (CONV = 3.9 log 10 normalized abundance, RWA = 4.5 log 10 normalized abundance, P < 0.01), and tet (M) (CONV = 5.4 log 10 normalized abundance, RWA = 5.8 log 10 normalized abundance, P < 0.01) were more abundant in RWA ground beef. Although these results suggest that antimicrobial use during U. S. cattle production does not increase human exposure to AMR via ground beef quantitative microbiological risk assessments are required for authoritative assessments regarding the human health impacts of antimicrobial uses during beef production.


Antibiotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 49 ◽  
Author(s):  
Houda Bennani ◽  
Ana Mateus ◽  
Nicholas Mays ◽  
Elizabeth Eastmure ◽  
Katharina D. C. Stärk ◽  
...  

Antimicrobial resistance (AMR) is a global health problem. Bacteria carrying resistance genes can be transmitted between humans, animals and the environment. There are concerns that the widespread use of antimicrobials in the food chain constitutes an important source of AMR in humans, but the extent of this transmission is not well understood. The aim of this review is to examine published evidence on the links between antimicrobial use (AMU) in the food chain and AMR in people and animals. The evidence showed a link between AMU in animals and the occurrence of resistance in these animals. However, evidence of the benefits of a reduction in AMU in animals on the prevalence of resistant bacteria in humans is scarce. The presence of resistant bacteria is documented in the human food supply chain, which presents a potential exposure route and risk to public health. Microbial genome sequencing has enabled the establishment of some links between the presence of resistant bacteria in humans and animals but, for some antimicrobials, no link could be established. Research and monitoring of AMU and AMR in an integrated manner is essential for a better understanding of the biology and the dynamics of antimicrobial resistance.


2019 ◽  
Vol 4 (1) ◽  
pp. 22 ◽  
Author(s):  
Peter Collignon ◽  
Scott McEwen

Approaching any issue from a One Health perspective necessitates looking at the interactions of people, domestic animals, wildlife, plants, and our environment. For antimicrobial resistance this includes antimicrobial use (and abuse) in the human, animal and environmental sectors. More importantly, the spread of resistant bacteria and resistance determinants within and between these sectors and globally must be addressed. Better managing this problem includes taking steps to preserve the continued effectiveness of existing antimicrobials such as trying to eliminate their inappropriate use, particularly where they are used in high volumes. Examples are the mass medication of animals with critically important antimicrobials for humans, such as third generation cephalosporins and fluoroquinolones, and the long term, in-feed use of antimicrobials, such colistin, tetracyclines and macrolides, for growth promotion. In people it is essential to better prevent infections, reduce over-prescribing and over-use of antimicrobials and stop resistant bacteria from spreading by improving hygiene and infection control, drinking water and sanitation. Pollution from inadequate treatment of industrial, residential and farm waste is expanding the resistome in the environment. Numerous countries and several international agencies have now included a One Health Approach within their action plans to address antimicrobial resistance. Necessary actions include improvements in antimicrobial use, better regulation and policy, as well as improved surveillance, stewardship, infection control, sanitation, animal husbandry, and finding alternatives to antimicrobials.


mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Justine L. Murray ◽  
Taejoon Kwon ◽  
Edward M. Marcotte ◽  
Marvin Whiteley

ABSTRACT Antimicrobial-resistant bacteria pose a serious threat in the clinic. This is particularly true for opportunistic pathogens that possess high intrinsic resistance. Though many studies have focused on understanding the acquisition of bacterial resistance upon exposure to antimicrobials, the mechanisms controlling intrinsic resistance are not well understood. In this study, we subjected the model opportunistic superbug Pseudomonas aeruginosa to 14 antimicrobials under highly controlled conditions and assessed its response using expression- and fitness-based genomic approaches. Our results reveal that gene expression changes and mutant fitness in response to sub-MIC antimicrobials do not correlate on a genomewide scale, indicating that gene expression is not a good predictor of fitness determinants. In general, fewer fitness determinants were identified for antiseptics and disinfectants than for antibiotics. Analysis of gene expression and fitness data together allowed the prediction of antagonistic interactions between antimicrobials and insight into the molecular mechanisms controlling these interactions. IMPORTANCE Infections involving multidrug-resistant pathogens are difficult to treat because the therapeutic options are limited. These infections impose a significant financial burden on infected patients and on health care systems. Despite years of antimicrobial resistance research, we lack a comprehensive understanding of the intrinsic mechanisms controlling antimicrobial resistance. This work uses two fine-scale genomic approaches to identify genetic loci important for antimicrobial resistance of the opportunistic pathogen Pseudomonas aeruginosa. Our results reveal that antibiotics have more resistance determinants than antiseptics/disinfectants and that gene expression upon exposure to antimicrobials is not a good predictor of these resistance determinants. In addition, we show that when used together, genomewide gene expression and fitness profiling can provide mechanistic insights into multidrug resistance mechanisms.


2021 ◽  
Vol 2 ◽  
Author(s):  
Raphael Z. Sangeda ◽  
Andrea Baha ◽  
Alexander Erick ◽  
Sonia Mkumbwa ◽  
Adonis Bitegeko ◽  
...  

BackgroundWith increased livestock keeping, multiple prevailing infections, antimicrobial agents’ use and pattern in Tanzania, the development of antimicrobial resistance (AMR) becomes inevitable. Antibiotic-resistant pathogens have increasingly become a major challenge in human and animal medicine. Although inappropriate use of antibiotics in humans is the principal cause of resistance, antibiotic-resistant bacteria originating from animals contribute to the emergence and spread of these bacteria. Antibiotics help control a multitude of bacterial infections that are major causes of diseases in both animals and humans. Rational use in animals is crucial to control any development and transfer of AMR to humans. This study aimed to create quantitative evidence of animal antimicrobial usage patterns in Tanzania to serve as a baseline for surveillance of antimicrobial use and antimicrobial resistance control.MethodologyThis descriptive longitudinal retrospective study was conducted to explore the trend of veterinary-antibiotics consumed in the eight years, from 1st January 2010 to 31st December 2017 in Tanzania mainland. The data source was records of all antibiotics imported for veterinary use into Tanzania’s mainland according to the Tanzania Medicines and Medical Devices Authority (TMDA) records. The analysis employed the World Health Organization (WHO) Collaborating Centre for Drug Statistics Methodology using Anatomical Therapeutic and Chemical (ATC) classification. Regression and time series analysis was used to establish trends in antibiotics consumption.ResultsA total of 12,147,491 kg of antibiotics were consumed in Tanzania from 2010 to 2017. Tetracycline, sulfonamides and trimethoprim, quinolones, aminoglycosides, beta-lactams and antibacterial combinations were the most commonly used antibacterial agents in Tanzania. Tetracycline class topped the list with about 8,090,798 kg (66.6%) out of 12,147,491 kg total quantity of antimicrobials consumed. Non-significant, linear curve estimations and time series analysis indicate a decline in the quantities of veterinary antibiotics used in the eight years from 2010 to 2017.ConclusionsThis study suggests that tetracycline is the most used antibiotic class for veterinary medicine in Tanzania. The trend of antimicrobial use is generally decreasing compared to other countries in Africa. Even though some antibiotics have the lowest consumption rate, they are also prone to AMR, prompting follow-up by the relevant regulatory authorities.


2019 ◽  
Vol 3 (2) ◽  
Author(s):  
J. W. Schmidt ◽  
A. Vikram ◽  
K. Thomas ◽  
T. M. Arthur ◽  
M. Weinroth ◽  
...  

ObjectivesThe occurrences of human bacterial infections complicated by antimicrobial resistance (AMR) have increased in recent decades. Concerns have been raised that food-animal production practices that incorporate antimicrobials contribute significantly to human AMR exposures since food-animal production accounts for approximately 81% of U.S. antimicrobial consumption by mass. Although empirical studies comparing AMR levels in meat products, including ground beef, are scant ground beef products with Raised without Antibiotics (RWA) label claims are perceived to harbor less AMR than “conventional” (CONV) products with no label claims regarding antimicrobial use. The objective of this research was to determine AMR levels in retail ground beef with and without an RWA label claims.Materials and MethodsRetail ground beef samples were obtained from 6 U.S. cities. Samples were obtained on the following dates: 9/18/2017, 10/30/2017, 11/27/2017. 1/29/2018. 3/5/2018, and 6/11/2018. A total of 599 samples were obtained. Samples with a “Raised without Antibiotics” or USDA Organic claim (N = 299) were assigned to the RWA production system. Samples lacking a “Raised without Antibiotics” claim (N = 300) were assigned to the CONV production system. Each sample was cultured for the detection of five antimicrobial resistant bacteria (ARB). Genomic DNA was isolated from each sample and qPCR was used to determine the abundance of ten antimicrobial resistance genes (ARGs). The impacts of production system and city on ARB detection were assessed by the Likelihood-ratio chi-squared test. The impacts of production system and city on ARG abundance was assessed by two-way ANOVA.ResultsTetracycline-resistant Escherichia coli (CONV = 46.3%; RWA = 34.4%) and erythromycin-resistant Enterococcus (CONV = 48.0%; RWA = 37.5%) were more frequently (P < 0.01) detected in CONV. Detection of third generation cephalosporin-resistant E. coli (CONV = 5.7%; RWA = 1.0%), vancomycin-resistant Enterococcus (CONV = 0.0%; RWA = 0.0%) and methicillin-resistant Staphylococcus aureus (CONV = 1.3%; RWA = 0.7%) did not differ (P = 1.00). The blaCTX-M ARG was more abundant in CONV (2.4 vs. 2.1 log copies/gram, P = 0.01) but the tet(A) (2.4 vs. 2.5 log copies/gram, P = 0.02) and tet(M) (3.6 vs. 3.9 log copies/gram, P < 0.01) ARGs were more abundant in RWA. aadA1, blaCMY-2, mecA, erm(B), and tet(B) abundances did not differ significantly (Fig. 5) (P > 0.05). Abundances of aac (6’)-Ie-aph (2”)-Ia and blaKPC-2 were not analyzed since they were quantified in less than 5% of the samples.ConclusionU.S. retail CONV and RWA ground beef harbor generally similar levels of AMR since only 5 of 15 AMR measurements were statistically different between production systems. Three AMR measurements were higher in CONV, while 2 AMR measurements were higher in RWA. These results are in general agreement with a recently published study authored by our group that examined antimicrobial resistance in CONV and RWA ground beef obtained from U.S. foodservice suppliers (Vikram et al., J. Food Prot. 81:2007–2018. 2018.). Together these studies suggest that antimicrobial use during U.S. cattle production has minimal to no impact on human exposure to AMR via ground beef.Figure 5.


Microbiome ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Oscar Mencía-Ares ◽  
Raúl Cabrera-Rubio ◽  
José Francisco Cobo-Díaz ◽  
Avelino Álvarez-Ordóñez ◽  
Manuel Gómez-García ◽  
...  

Abstract Background The global threat of antimicrobial resistance (AMR) is a One Health problem impacted by antimicrobial use (AMU) for human and livestock applications. Extensive Iberian swine production is based on a more sustainable and eco-friendly management system, providing an excellent opportunity to evaluate how sustained differences in AMU impact the resistome, not only in the animals but also on the farm environment. Here, we evaluate the resistome footprint of an extensive pig farming system, maintained for decades, as compared to that of industrialized intensive pig farming by analyzing 105 fecal, environmental and slurry metagenomes from 38 farms. Results Our results evidence a significantly higher abundance of antimicrobial resistance genes (ARGs) on intensive farms and a link between AMU and AMR to certain antimicrobial classes. We observed differences in the resistome across sample types, with a higher richness and dispersion of ARGs within environmental samples than on those from feces or slurry. Indeed, a deeper analysis revealed that differences among the three sample types were defined by taxa-ARGs associations. Interestingly, mobilome analyses revealed that the observed AMR differences between intensive and extensive farms could be linked to differences in the abundance of mobile genetic elements (MGEs). Thus, while there were no differences in the abundance of chromosomal-associated ARGs between intensive and extensive herds, a significantly higher abundance of integrons in the environment and plasmids, regardless of the sample type, was detected on intensive farms. Conclusions Overall, this study shows how AMU, production system, and sample type influence, mainly through MGEs, the profile and dispersion of ARGs in pig production.


2020 ◽  
Vol 18 (3) ◽  
pp. 201-206
Author(s):  
Farzaneh Firoozeh ◽  
Mohammad Zibaei

In the current world, development and spread of antimicrobial resistance among bacteria have been raised and antimicrobial-resistant bacteria are one of the most important health challenges. The antimicrobial resistance genes can easily move and transfer among diverse bacterial species and strains. The human gut microbiota consists of a dense microbial population including trillions of microorganisms. Recently, studies have shown that the bacteria which make the major part of gut microbiota, harbor a variety of antimicrobial resistance genes which are called gut resistome. The transfer of resistance genes from commensal bacteria to gut-resident opportunistic bacteria may involve in the emergence of multi-drug resistant (MDR) bacteria. Thus, the main aim of the current mini-review was to study the mechanisms of exchange of antimicrobial resistance genes by commensal and opportunistic pathogenic bacteria in the human gut.


2020 ◽  
Vol 96 (8) ◽  
Author(s):  
Saharuetai Jeamsripong ◽  
Winn Khant ◽  
Rungtip Chuanchuen

ABSTRACT A total of 594 Vibrio parahaemolyticus isolates from cultivated oysters (n = 361) and estuarine water (n = 233) were examined for antimicrobial resistance (AMR) phenotype and genotype and virulence genes. Four hundred forty isolates (74.1%) exhibited resistance to at least one antimicrobial agent and 13.5% of the isolates were multidrug-resistant strains. Most of the V. parahaemolyticus isolates were resistant to erythromycin (54.2%), followed by sulfamethoxazole (34.7%) and trimethoprim (27.9%). The most common resistance genes were qnr (77.8%), strB (27.4%) and tet(A) (22.1%), whereas blaTEM (0.8%) was rarely found. Four isolates (0.7%) from oysters (n = 2) and estuarine water (n = 2) were positive to tdh, whereas no trh-positive isolates were observed. Significantly positive associations among AMR genes were observed. The SXT elements and class 1, 2 and 3 integrons were absent in all isolates. The results indicated that V. parahaemolyticus isolates from oysters and estuarine water were potential reservoirs of resistance determinants in the environment. This increasing threat of resistant bacteria in the environment potentially affects human health. A ‘One Health’ approach involved in multidisciplinary collaborations must be implemented to effectively manage antimicrobial resistance.


Sign in / Sign up

Export Citation Format

Share Document