A Comparison of Conventional and Tri-Polar EEG Electrodes for Decoding Real and Imaginary Finger Movements from One Hand

Author(s):  
Saleh I. Alzahrani ◽  
Charles W. Anderson

The representations of different fingers in the sensorimotor cortex are largely overlapped, which necessitate a good signal-to-noise ratio (SNR) and high spatial resolution to classify individual finger movements from one hand. Electroencephalography (EEG) recorded with disc electrodes has low SNR and poor spatial resolution. The surface Laplacian has been applied to EEG to improve the spatial resolution and selectivity of the surface electrical activity recording. Tri-polar concentric ring electrodes (TCREs) were shown to estimate the Laplacian automatically with better spatial resolution than disc electrodes. For this work, movement-related potentials (MRPs) were recorded from four TCREs and disc electrodes while 13 subjects performed real and imaginary finger movements. The MRP signals recorded with the TCREs have significantly less mutual information and coherence between neighboring locations compared to disc electrodes. The results also show that signals from TCREs generated higher accuracy compared to disc electrodes. It further shows that TCREs using temporal EEG data as features yield an average accuracy of [Formula: see text]% and [Formula: see text]% for real and imaginary finger movements, respectively, which is significantly higher than utilizing EEG spectral power changes in [Formula: see text] and [Formula: see text] bands as features. Similarly, with the disc electrodes, it achieved highest accuracy of [Formula: see text]% and [Formula: see text]% for real and imaginary finger movements, respectively, with temporal EEG data feature.

Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1867 ◽  
Author(s):  
Li-Wei Ko ◽  
Yang Chang ◽  
Pei-Lun Wu ◽  
Heng-An Tzou ◽  
Sheng-Fu Chen ◽  
...  

Conducting electrophysiological measurements from human brain function provides a medium for sending commands and messages to the external world, as known as a brain–computer interface (BCI). In this study, we proposed a smart helmet which integrated the novel hygroscopic sponge electrodes and a combat helmet for BCI applications; with the smart helmet, soldiers can carry out extra tasks according to their intentions, i.e., through BCI techniques. There are several existing BCI methods which are distinct from each other; however, mutual issues exist regarding comfort and user acceptability when utilizing such BCI techniques in practical applications; one of the main challenges is the trade-off between using wet and dry electroencephalographic (EEG) electrodes. Recently, several dry EEG electrodes without the necessity of conductive gel have been developed for EEG data collection. Although the gel was claimed to be unnecessary, high contact impedance and low signal-to-noise ratio of dry EEG electrodes have turned out to be the main limitations. In this study, a smart helmet with novel hygroscopic sponge electrodes is developed and investigated for long-term usage of EEG data collection. The existing electrodes and EEG equipment regarding BCI applications were adopted to examine the proposed electrode. In the impedance test of a variety of electrodes, the sponge electrode showed performance averaging 118 kΩ, which was comparable with the best one among existing dry electrodes, which averaged 123 kΩ. The signals acquired from the sponge electrodes and the classic wet electrodes were analyzed with correlation analysis to study the effectiveness. The results indicated that the signals were similar to each other with an average correlation of 90.03% and 82.56% in two-second and ten-second temporal resolutions, respectively, and 97.18% in frequency responses. Furthermore, by applying the proposed differentiable power algorithm to the system, the average accuracy of 21 subjects can reach 91.11% in the steady-state visually evoked potential (SSVEP)-based BCI application regarding a simulated military mission. To sum up, the smart helmet is capable of assisting the soldiers to execute instructions with SSVEP-based BCI when their hands are not available and is a reliable piece of equipment for strategical applications.


2020 ◽  
Vol 495 (4) ◽  
pp. 3819-3838
Author(s):  
Ayan Acharyya ◽  
Mark R Krumholz ◽  
Christoph Federrath ◽  
Lisa J Kewley ◽  
Nathan J Goldbaum ◽  
...  

ABSTRACT Metallicity gradients are important diagnostics of galaxy evolution, because they record the history of events such as mergers, gas inflow, and star formation. However, the accuracy with which gradients can be measured is limited by spatial resolution and noise, and hence, measurements need to be corrected for such effects. We use high-resolution (∼20 pc) simulation of a face-on Milky Way mass galaxy, coupled with photoionization models, to produce a suite of synthetic high-resolution integral field spectroscopy (IFS) datacubes. We then degrade the datacubes, with a range of realistic models for spatial resolution (2−16 beams per galaxy scale length) and noise, to investigate and quantify how well the input metallicity gradient can be recovered as a function of resolution and signal-to-noise ratio (SNR) with the intention to compare with modern IFS surveys like MaNGA and SAMI. Given appropriate propagation of uncertainties and pruning of low SNR pixels, we show that a resolution of 3–4 telescope beams per galaxy scale length is sufficient to recover the gradient to ∼10–20 per cent uncertainty. The uncertainty escalates to ∼60 per cent for lower resolution. Inclusion of the low SNR pixels causes the uncertainty in the inferred gradient to deteriorate. Our results can potentially inform future IFS surveys regarding the resolution and SNR required to achieve a desired accuracy in metallicity gradient measurements.


1998 ◽  
Vol 39 (1) ◽  
pp. 60-63 ◽  
Author(s):  
T. Nishiharu ◽  
Y. Yamashita ◽  
I. Ogata ◽  
S. Sumi ◽  
K. Mitsuzaki ◽  
...  

Purpose: to compare the value of a retrospective targeted high-resolution spiral CT to the standard reconstruction technique in the assessment of pancreatic diseases Material and Methods: Spiral CT pancreatic images of a standard-size reconstruction protocol were compared prospectively with those of a retrospective targeted high-spatial-resolution reconstruction protocol in 30 patients. Prior to clinical evaluation, a phantom study was performed to evaluate the spatial resolution and signal-to-noise ratio of both protocols Results: the high-resolution protocol achieved a good signal-to-noise ratio with acceptable spatial resolution. Phantom studies revealed increased image noise (+17%) with an increase in spatial resolution (+100%). in patients studied with the high-resolution protocol, the increase in noise was not significant but there was a marked improvement in the definition of small details Conclusion: Images obtained with a targeted high-spatial-resolution reconstruction protocol showed superior lesion definition and vascular opacification compared with those obtained with a standard-size reconstruction protocol. This technique may have potential in the evaluation of small pancreatic abnormalities


2018 ◽  
Author(s):  
Abdulmajeed Alsufyani ◽  
Alexia Zoumpoulaki ◽  
Marco Filetti ◽  
Dirk P. Janssen ◽  
Howard Bowman

AbstractIn this study, a simple method called the Weight Template (WT) is proposed for classifying brain responses of individuals into deceiving and non-deceiving. The performance of our method was evaluated on a number of identity deception data sets and on artificial EEG data sets. A comparison was made with a standard method used to measure P3 presence, called Peak-to-Peak. In the real experimental data, the WT showed higher performance in terms of sensitivity and specificity. In the artificial EEG data, in ERPs with low Signal-to-Noise Ratio (SNR), the WT was more resistant to noise and provided more accurate measures.HighlightsWe propose a method for classifying ERPs of the P3 Concealed Information Tests.The new method is based on computing a weighted template (WT) for each individual.The WT is used to characterize the shape of each individual’s P3.The performance of the WT was compared with the standard Peak-to-Peak method.The WT showed higher performance in terms of sensitivity and specificity.


2021 ◽  
Vol 11 (7) ◽  
pp. 835
Author(s):  
Alexander Rokos ◽  
Richard Mah ◽  
Rober Boshra ◽  
Amabilis Harrison ◽  
Tsee Leng Choy ◽  
...  

A consistent limitation when designing event-related potential paradigms and interpreting results is a lack of consideration of the multivariate factors that affect their elicitation and detection in behaviorally unresponsive individuals. This paper provides a retrospective commentary on three factors that influence the presence and morphology of long-latency event-related potentials—the P3b and N400. We analyze event-related potentials derived from electroencephalographic (EEG) data collected from small groups of healthy youth and healthy elderly to illustrate the effect of paradigm strength and subject age; we analyze ERPs collected from an individual with severe traumatic brain injury to illustrate the effect of stimulus presentation speed. Based on these critical factors, we support that: (1) the strongest paradigms should be used to elicit event-related potentials in unresponsive populations; (2) interpretation of event-related potential results should account for participant age; and (3) speed of stimulus presentation should be slower in unresponsive individuals. The application of these practices when eliciting and recording event-related potentials in unresponsive individuals will help to minimize result interpretation ambiguity, increase confidence in conclusions, and advance the understanding of the relationship between long-latency event-related potentials and states of consciousness.


2021 ◽  
Vol 17 (1-2) ◽  
pp. 3-14
Author(s):  
Stathis C. Stiros ◽  
F. Moschas ◽  
P. Triantafyllidis

GNSS technology (known especially for GPS satellites) for measurement of deflections has proved very efficient and useful in bridge structural monitoring, even for short stiff bridges, especially after the advent of 100 Hz GNSS sensors. Mode computation from dynamic deflections has been proposed as one of the applications of this technology. Apart from formal modal analyses with GNSS input, and from spectral analysis of controlled free attenuating oscillations, it has been argued that simple spectra of deflections can define more than one modal frequencies. To test this scenario, we analyzed 21 controlled excitation events from a certain bridge monitoring survey, focusing on lateral and vertical deflections, recorded both by GNSS and an accelerometer. These events contain a transient and a following oscillation, and they are preceded and followed by intervals of quiescence and ambient vibrations. Spectra for each event, for the lateral and the vertical axis of the bridge, and for and each instrument (GNSS, accelerometer) were computed, normalized to their maximum value, and printed one over the other, in order to produce a single composite spectrum for each of the four sets. In these four sets, there was also marked the true value of modal frequency, derived from free attenuating oscillations. It was found that for high SNR (signal-to-noise ratio) deflections, spectral peaks in both acceleration and displacement spectra differ by up to 0.3 Hz from the true value. For low SNR, defections spectra do not match the true frequency, but acceleration spectra provide a low-precision estimate of the true frequency. This is because various excitation effects (traffic, wind etc.) contribute with numerous peaks in a wide range of frequencies. Reliable estimates of modal frequencies can hence be derived from deflections spectra only if excitation frequencies (mostly traffic and wind) can be filtered along with most measurement noise, on the basis of additional data.


2021 ◽  
Vol 11 (2) ◽  
pp. 214
Author(s):  
Anna Kaiser ◽  
Pascal-M. Aggensteiner ◽  
Martin Holtmann ◽  
Andreas Fallgatter ◽  
Marcel Romanos ◽  
...  

Electroencephalography (EEG) represents a widely established method for assessing altered and typically developing brain function. However, systematic studies on EEG data quality, its correlates, and consequences are scarce. To address this research gap, the current study focused on the percentage of artifact-free segments after standard EEG pre-processing as a data quality index. We analyzed participant-related and methodological influences, and validity by replicating landmark EEG effects. Further, effects of data quality on spectral power analyses beyond participant-related characteristics were explored. EEG data from a multicenter ADHD-cohort (age range 6 to 45 years), and a non-ADHD school-age control group were analyzed (ntotal = 305). Resting-state data during eyes open, and eyes closed conditions, and task-related data during a cued Continuous Performance Task (CPT) were collected. After pre-processing, general linear models, and stepwise regression models were fitted to the data. We found that EEG data quality was strongly related to demographic characteristics, but not to methodological factors. We were able to replicate maturational, task, and ADHD effects reported in the EEG literature, establishing a link with EEG-landmark effects. Furthermore, we showed that poor data quality significantly increases spectral power beyond effects of maturation and symptom severity. Taken together, the current results indicate that with a careful design and systematic quality control, informative large-scale multicenter trials characterizing neurophysiological mechanisms in neurodevelopmental disorders across the lifespan are feasible. Nevertheless, results are restricted to the limitations reported. Future work will clarify predictive value.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4623
Author(s):  
Sinead Barton ◽  
Salaheddin Alakkari ◽  
Kevin O’Dwyer ◽  
Tomas Ward ◽  
Bryan Hennelly

Raman spectroscopy is a powerful diagnostic tool in biomedical science, whereby different disease groups can be classified based on subtle differences in the cell or tissue spectra. A key component in the classification of Raman spectra is the application of multi-variate statistical models. However, Raman scattering is a weak process, resulting in a trade-off between acquisition times and signal-to-noise ratios, which has limited its more widespread adoption as a clinical tool. Typically denoising is applied to the Raman spectrum from a biological sample to improve the signal-to-noise ratio before application of statistical modeling. A popular method for performing this is Savitsky–Golay filtering. Such an algorithm is difficult to tailor so that it can strike a balance between denoising and excessive smoothing of spectral peaks, the characteristics of which are critically important for classification purposes. In this paper, we demonstrate how Convolutional Neural Networks may be enhanced with a non-standard loss function in order to improve the overall signal-to-noise ratio of spectra while limiting corruption of the spectral peaks. Simulated Raman spectra and experimental data are used to train and evaluate the performance of the algorithm in terms of the signal to noise ratio and peak fidelity. The proposed method is demonstrated to effectively smooth noise while preserving spectral features in low intensity spectra which is advantageous when compared with Savitzky–Golay filtering. For low intensity spectra the proposed algorithm was shown to improve the signal to noise ratios by up to 100% in terms of both local and overall signal to noise ratios, indicating that this method would be most suitable for low light or high throughput applications.


2018 ◽  
Vol 170 ◽  
pp. 09005 ◽  
Author(s):  
M.-L. Gallin-Martel ◽  
L. Abbassi ◽  
A. Bes ◽  
G. Bosson ◽  
J. Collot ◽  
...  

The MoniDiam project is part of the French national collaboration CLaRyS (Contrôle en Ligne de l’hAdronthérapie par RaYonnements Secondaires) for on-line monitoring of hadron therapy. It relies on the imaging of nuclear reaction products that is related to the ion range. The goal here is to provide large area beam detectors with a high detection efficiency for carbon or proton beams giving time and position measurement at 100 MHz count rates (beam tagging hodoscope). High radiation hardness and intrinsic electronic properties make diamonds reliable and very fast detectors with a good signal to noise ratio. Commercial Chemical Vapor Deposited (CVD) poly-crystalline, heteroepitaxial and monocrystalline diamonds were studied. Their applicability as a particle detector was investigated using α and β radioactive sources, 95 MeV/u carbon ion beams at GANIL and 8.5 keV X-ray photon bunches from ESRF. This facility offers the unique capability of providing a focused (~1 μm) beam in bunches of 100 ps duration, with an almost uniform energy deposition in the irradiated detector volume, therefore mimicking the interaction of single ions. A signal rise time resolution ranging from 20 to 90 ps rms and an energy resolution of 7 to 9% were measured using diamonds with aluminum disk shaped surface metallization. This enabled us to conclude that polycrystalline CVD diamond detectors are good candidates for our beam tagging hodoscope development. Recently, double-side stripped metallized diamonds were tested using the XBIC (X Rays Beam Induced Current) set-up of the ID21 beamline at ESRF which permits us to evaluate the capability of diamond to be used as position sensitive detector. The final detector will consist in a mosaic arrangement of double-side stripped diamond sensors read out by a dedicated fast-integrated electronics of several hundreds of channels.


2018 ◽  
Vol 10 (5-6) ◽  
pp. 578-586 ◽  
Author(s):  
Simon Senega ◽  
Ali Nassar ◽  
Stefan Lindenmeier

AbstractFor a fast scan-phase satellite radio antenna diversity system a noise correction method is presented for a significant improvement of audio availability at low signal-to-noise ratio (SNR) conditions. An error analysis of the level and phase detection within the diversity system in the presence of noise leads to a correction method based on a priori knowledge of the system's noise floor. This method is described and applied in a hardware example of a satellite digital audio radio services antenna diversity circuit for fast fading conditions. Test drives, which have been performed in real fading scenarios, are described and results are analyzed statistically. Simulations of the scan-phase antenna diversity system show higher signal amplitudes and availabilities. Measurement results of dislocated antennas as well as of a diversity antenna set on a single mounting position are presented. A comparison of a diversity system with noise correction, the same system without noise correction, and a single antenna system with each other is performed. Using this new method in fast multipath fading driving scenarios underneath dense foliage with a low SNR of the antenna signals, a reduction in audio mute time by one order of magnitude compared with single antenna systems is achieved with the diversity system.


Sign in / Sign up

Export Citation Format

Share Document