A 0.5–1.2 V PWM CMOS DPS WITH 120 dB DYNAMIC RANGE FOR BIONIC HUMAN EYE IN DEEP SUBMICRON CMOS TECHNOLOGY

2014 ◽  
Vol 23 (02) ◽  
pp. 1450020 ◽  
Author(s):  
JIANGTAO XU ◽  
WEISONG JIN ◽  
KAIMING NIE ◽  
SUYING YAO

In this paper, a CMOS digital pixel sensor (DPS) with pixel-level ADC based on pulse width modulation (PWM) scheme is proposed to overcome the restriction of low supply voltage imposed by device scaling trend. The pixel operates with a dynamic current comparison scheme to avoid using complex in-pixel comparator and achieve a high dynamic range (DR). By adjusting clock frequency for different illumination, DR is further extended due to increasing the maximum detectable photocurrent and lowering the minimum detectable photocurrent. The pixel contains a photodiode (PD), an 11-bit in-pixel SRAM and other 11 transistors, and occupies an area of 7 μm × 7 μm, with a fill factor of 31.3% using a standard 65 nm CMOS technology. Simulation results show that this pixel can work at a supply voltage as low as 0.5 V with 120 dB DR and 80 dB linear DR (LDR). The properties of high DR and logarithmic response make the proposed digital pixel be capable of human eye. Frame rate achieves 246 fps with 640 × 480 pixel array by using in-pixel ADC and SRAM. This makes the digital pixel very suitable for high-speed snap shot digital camera application.

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2033
Author(s):  
Ahmed Elgreatly ◽  
Ahmed Dessouki ◽  
Hassan Mostafa ◽  
Rania Abdalla ◽  
El-sayed El-Rabaie

Time-based analog-to-digital converter is considered a crucial part in the design of software-defined radio receivers for its higher performance than other analog-to-digital converters in terms of operation speed, input dynamic range and power consumption. In this paper, two novel voltage-to-time converters are proposed at which the input voltage signal is connected to the body terminal of the starving transistor rather than its gate terminal. These novel converters exhibit better linearity, which is analytically proven in this paper. The maximum linearity error is reduced to 0.4%. In addition, the input dynamic range of these converters is increased to 800 mV for a supply voltage of 1.2 V by using industrial hardware-calibrated TSMC 65 nm CMOS technology. These novel designs consist of only a single inverter stage, which results in reducing the layout area and the power consumption. The overall power consumption is 18 μW for the first proposed circuit and 15 μW for the second proposed circuit. The novel converter circuits have a resolution of 5 bits and operate at a maximum clock frequency of 500 MHz.


2012 ◽  
Vol 433-440 ◽  
pp. 5727-5732
Author(s):  
Jun Han ◽  
Wei Dong Wang

This paper presents the design and implementation of a single-loop three-order switched-capacitor sigma-delta modulator(SDM) with a standard 0.18um CMOS technology. A current optimization technique is utilized in proposed design to reduce the power of operational transconductance amplifier(OTA).Using a chain of Integrators with weighted feed-forward summation(CIFF) structure and optimized single-stage class-A OTA with positive feed-back to minimize the power consumption. The SDM has been presented with an over-sampling ratio of 128,clock frequency 6.144MHz,24kHz band- width, and achieves a peak SNR of 100dB,103dB dynamic range. The whole circuits consume 2.87mW from a single 1.8V supply voltage.


2014 ◽  
Vol 23 (02) ◽  
pp. 1450030 ◽  
Author(s):  
YU-CHERNG HUNG

In this paper, a compact high-precision digital pulse-width modulation (DPWM) CMOS circuit is proposed. The circuit, with multiple output capability, allows brightness control of red, green, and blue (RGB) light emitting diode (LED) lighting. The PWM technique is used for LED dimming control to avoid the problem of color shifting. In this design, complementary concepts and hardware sharing are utilized to achieve a compact architecture and small chip area. A double-edge triggered technique is adopted to enhance the capability of high-speed operation. An experimental chip has been realized by using TSMC 0.18-μm CMOS technology. Simulation results show that the proposed 5-bit PWM circuit can operate at 200 MHz, 32 duty cycles adjustable, and within only 1-ns time error. The chip's measured results show that the new PWM circuit with three output channels works successfully at a supply voltage of 1.8-V, clock of 50-MHz, and resolution of 32 adjustable per channel. The core area of the chip is only 280 × 52.5 μm2.


2021 ◽  
Vol 11 (1) ◽  
pp. 429
Author(s):  
Min-Su Kim ◽  
Youngoo Yang ◽  
Hyungmo Koo ◽  
Hansik Oh

To improve the performance of analog, RF, and digital integrated circuits, the cutting-edge advanced CMOS technology has been widely utilized. We successfully designed and implemented a high-speed and low-power serial-to-parallel (S2P) converter for 5G applications based on the 28 nm CMOS technology. It can update data easily and quickly using the proposed address allocation method. To verify the performances, an embedded system (NI-FPGA) for fast clock generation on the evaluation board level was also used. The proposed S2P converter circuit shows extremely low power consumption of 28.1 uW at 0.91 V with a core die area of 60 × 60 μm2 and operates successfully over a wide clock frequency range from 5 M to 40 MHz.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 551
Author(s):  
Zhongjian Bian ◽  
Xiaofeng Hong ◽  
Yanan Guo ◽  
Lirida Naviner ◽  
Wei Ge ◽  
...  

Spintronic based embedded magnetic random access memory (eMRAM) is becoming a foundry validated solution for the next-generation nonvolatile memory applications. The hybrid complementary metal-oxide-semiconductor (CMOS)/magnetic tunnel junction (MTJ) integration has been selected as a proper candidate for energy harvesting, area-constraint and energy-efficiency Internet of Things (IoT) systems-on-chips. Multi-VDD (low supply voltage) techniques were adopted to minimize energy dissipation in MRAM, at the cost of reduced writing/sensing speed and margin. Meanwhile, yield can be severely affected due to variations in process parameters. In this work, we conduct a thorough analysis of MRAM sensing margin and yield. We propose a current-mode sensing amplifier (CSA) named 1D high-sensing 1D margin, high 1D speed and 1D stability (HMSS-SA) with reconfigured reference path and pre-charge transistor. Process-voltage-temperature (PVT) aware analysis is performed based on an MTJ compact model and an industrial 28 nm CMOS technology, explicitly considering low-voltage (0.7 V), low tunneling magnetoresistance (TMR) (50%) and high temperature (85 °C) scenario as the worst sensing case. A case study takes a brief look at sensing circuits, which is applied to in-memory bit-wise computing. Simulation results indicate that the proposed high-sensing margin, high speed and stability sensing-sensing amplifier (HMSS-SA) achieves remarkable performance up to 2.5 GHz sensing frequency. At 0.65 V supply voltage, it can achieve 1 GHz operation frequency with only 0.3% failure rate.


2014 ◽  
Vol 23 (01) ◽  
pp. 1450004 ◽  
Author(s):  
XIAOBO XUE ◽  
XIAOLEI ZHU ◽  
QIFENG SHI ◽  
LENIAN HE

In this paper, a 12-bit current-steering digital-to-analog converter (DAC) employing a deglitching technique is proposed. The deglitching technique is realized by lowering the voltage swing of the control signal as well as by using a method of glitch counteraction (GC). A new switch–driver structure is designed to enable the effectiveness of the GC and provide sufficient driving capability under a low supply voltage. Moreover, the control signal's rise/fall asymmetry which increases the glitch error can be suppressed by using the proposed switch–driver structure. The 12-bit DAC is implemented in 180 nm CMOS technology. The measurement results show that the spurious free dynamic range (SFDR) at low signal frequency is 78.8 dB, and it is higher than 70 dB up to 60 MHz signal frequency at 400 MS/s. The measured INL and DNL are both less than ±0.6 LSB.


2004 ◽  
Vol 1 (3) ◽  
pp. 37-44 ◽  
Author(s):  
Dragisa Milovanovic ◽  
Milan Savic ◽  
Miljan Nikolic

As a part of wider project sigma-delta modulator was designed. It represents an A/D part of a power meter IC. Requirements imposed were: SNDR and dynamic range > 50 dB for maximum input swing of 250 mV differential at 50 Hz. Over sampling ratio is 128 with clock frequency of 524288 Hz which gives bandwidth of 2048 Hz. Circuit is designed in 3.3 V supply standard CMOS 0.35 ?m technology.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2931
Author(s):  
Waldemar Jendernalik ◽  
Jacek Jakusz ◽  
Grzegorz Blakiewicz

Buffer-based CMOS filters are maximally simplified circuits containing as few transistors as possible. Their applications, among others, include nano to micro watt biomedical sensors that process physiological signals of frequencies from 0.01 Hz to about 3 kHz. The order of a buffer-based filter is not greater than two. Hence, to obtain higher-order filters, a cascade of second-order filters is constructed. In this paper, a more general method for buffer-based filter synthesis is developed and presented. The method uses RLC ladder prototypes to obtain filters of arbitrary orders. In addition, a set of novel circuit solutions with ultra-low voltage and power are proposed. The introduced circuits were synthesized and simulated using 180-nm CMOS technology of X-FAB. One of the designed circuits is a fourth-order, low-pass filter that features: 100-Hz passband, 0.4-V supply voltage, power consumption of less than 5 nW, and dynamic range above 60 dB. Moreover, the total capacitance of the proposed filter (31 pF) is 25% lower compared to the structure synthesized using a conventional cascade method (40 pF).


Author(s):  
Rarika Ravi ◽  
Anu Assis

<p>This paper discusses about different receiver designs adopted so far for various electronic toll collection systems. A comparative analysis based on the discussions is also provided. It shows that each design has it's own advantages and disadvantages compared to others. The main aim of this paper is to identify the most suitable design. The researches shows that the receiver design described in the 5.8GHz digitally controlled DSRC receiver for Chinese electronic toll collection system is the most suitable one. Here all RF, IF blocks and digital baseband for on-chip automatic gain control, are integrated on an RF-SoC. The proposed digitally controlled LNA and mixer circuits are elaborated. The technology used is 0.13μm CMOS technology. The RF block occupies a chip area of 0.75mm2. It consumes 22mA under a 1.5V supply voltage. The bit error rate maintains better than 10-6, the input power level varies from -75dBm to -8dBm. This design provides a receiver sensitivity improvement of at least 25%, and a dynamic range enhancement of at least 12%.</p>


2019 ◽  
Vol 29 (10) ◽  
pp. 2020005
Author(s):  
Hao Wang ◽  
Wenming Xie ◽  
Zhixin Chen

A novel area-efficient switching scheme is proposed for the successive approximation register (SAR) analog-to-digital converters (ADCs). The capacitor-splitting structure, charge-average switching technique, and [Formula: see text] (equal to [Formula: see text]/4) are combined together and optimized to realize the proposed switching scheme. [Formula: see text] is only used in the last two bit cycles, which affects the ADC accuracy little and reduces capacitor area by half. It achieves a 98% less switching energy and an 87.5% less capacitor area compared with the conventional switching method. In addition, the DAC output common-mode voltage is approximately constant. Thus, the proposed switching method is a good tradeoff among power consumption, capacitor area, DAC output common-mode voltage, and ADC accuracy. The proposed SAR ADC is simulated in 0.18[Formula: see text][Formula: see text]m CMOS technology with a supply voltage of 0.6[Formula: see text]V and at a sampling rate of 20[Formula: see text]kS/s. The signal-to-noise-distortion ratio (SNDR) and spurious free dynamic range (SFDR) are 58.2 and 73.7[Formula: see text]dB, respectively. The effective number of bits (ENOB) is 9.4. It consumes 42[Formula: see text]nW, resulting in a figure-of-merit (FoM) of 3.11 fJ/conversion-step.


Sign in / Sign up

Export Citation Format

Share Document