Realization of Fractional-Order Double-Scroll Chaotic System Using Operational Transconductance Amplifier (OTA)

2017 ◽  
Vol 27 (01) ◽  
pp. 1850006 ◽  
Author(s):  
Mohammad Rafiq Dar ◽  
Nasir Ali Kant ◽  
Farooq Ahmad Khanday

Realization of fractional-order double-scroll chaotic system using Operational Transconductance Amplifiers (OTAs) as active elements are presented in this paper. The fractional-order double-scroll chaotic system has been studied before as well using passive RC-ladder and tree-based structures but in this paper the requisite fractional-order integration has been accomplished through an integer-order multiple-feedback topology. As compared to double or multiple scroll chaotic systems existing in the open literature, the proposed realization offers the advantages of (a) low-voltage implementation, (b) integrablity as the design is resistor- and inductor-less and only grounded components have been employed in the design, and, (c) electronic tunability of the fractional order, time-constants and gain factors. In order to demonstrate the usefulness of the chaotic system, a simple secure message communication system has been designed and verified for its operation. The theoretical predictions of the proposed implementations have been verified by using 0.35[Formula: see text][Formula: see text]m complementary metal oxide semiconductor (CMOS) process file provided by Austrian Micro System (AMS).

Author(s):  
Mohammad Rafiq Dar ◽  
Nasir Ali Kant ◽  
Farooq Ahmad Khanday

A complementary metal oxide semiconductor-operational transconductance amplifier (CMOS-OTA)-based implementation of fractional-order Newton–Leipnik chaotic system is introduced in this paper. The proposed circuit offers the advantages of electronic tunability of system order and on-chip integration due to MOS only design. The double strange attractor chaotic behavior of the system in consideration for an order of 2.9 has been demonstrated, and effectiveness of this chaotic system in preliminary secure message communication has also been presented. The theoretical predictions of the proposed implementation have been verified by hspice simulator using Austrian Microsystem (AMS) 0.35 μm CMOS process and subsequently compared with matlab simulink results. The power consumption of the system was 103.6 μW for standalone Newton–Leipnik chaotic generator.


2017 ◽  
Vol 27 (05) ◽  
pp. 1750077 ◽  
Author(s):  
Mohammad Rafiq Dar ◽  
Nasir Ali Kant ◽  
Farooq Ahmad Khanday

In this paper, electronic implementation of fractional-order Rössler system using operational transconductance amplifiers (OTAs) is presented which until now was only being investigated through numerical simulations. The realization offers the benefits of low-voltage implementation, integrability and electronic tunability. In addition, the proposed circuit is a MOS only design (as no BJTs have been used) which contains only grounded components and is therefore suitable for monolithic VLSI design. The chaotic behavior of the fractional-order Rössler system in consideration with the incommensurate orders has been demonstrated which finds many applications in several fields. The theoretical predictions of the proposed implementation have been verified through experimentation and HSPICE simulator using Austrian Micro System (AMS) 0.35[Formula: see text][Formula: see text]m CMOS process and the obtained results have been found in good agreement with the Matlab simulink theoretical results obtained using FOMCON simulink toolbox. Besides, a secure message communication system has been considered to demonstrate fully the usefulness of the chaotic system.


2021 ◽  
Vol 5 (3) ◽  
pp. 122
Author(s):  
Martín Alejandro Valencia-Ponce ◽  
Perla Rubí Castañeda-Aviña ◽  
Esteban Tlelo-Cuautle ◽  
Victor Hugo Carbajal-Gómez ◽  
Victor Rodolfo González-Díaz ◽  
...  

Fractional-order chaotic oscillators (FOCOs) have shown more complexity than integer-order chaotic ones. However, the majority of electronic implementations were performed using embedded systems; compared to analog implementations, they require huge hardware resources to approximate the solution of the fractional-order derivatives. In this manner, we propose the design of FOCOs using fractional-order integrators based on operational transconductance amplifiers (OTAs). The case study shows the implementation of FOCOs by cascading first-order OTA-based filters designed with complementary metal-oxide-semiconductor (CMOS) technology. The OTAs have programmable transconductance, and the robustness of the fractional-order integrator is verified by performing process, voltage and temperature variations as well as Monte Carlo analyses for a CMOS technology of 180 nm from the United Microelectronics Corporation. Finally, it is highlighted that post-layout simulations are in good agreement with the simulations of the mathematical model of the FOCO.


2016 ◽  
Vol 25 (11) ◽  
pp. 1650140 ◽  
Author(s):  
Ling-Feng Shi ◽  
Zhen-Bo Shi ◽  
Sen Chen ◽  
Jian-Hui Xun

Primary-side controlled pulse-width modulation (PWM) flyback converter has been widely used in low-power and low-voltage products for its simple structure and low cost. This paper presents a novel output voltage sampling circuit which considers the influence of the rectifier diode current on the output voltage sampling. The output voltage sampling circuit samples the output voltage at 85% of the secondary inductance discharge time [Formula: see text] of last cycle, which improves the accuracy of the output voltage sampling circuit. Besides, the circuit can also sample the secondary inductance discharge time [Formula: see text]. Finally, a chip has been fabricated in 0.6[Formula: see text][Formula: see text]m complementary metal-oxide semiconductor (CMOS) process, which is used in the presented output voltage sampling circuit in its internal circuit to simple output voltage and achieve constant output voltage.


Instruments ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 33
Author(s):  
Jinsoo Rhim ◽  
Xiaoge Zeng ◽  
Zhihong Huang ◽  
Sai Rahul Chalamalasetti ◽  
Marco Fiorentino ◽  
...  

We present a single-photon sensor based on the single-photon avalanche diode (SPAD) that is suitable for low-cost and low-voltage light detection and ranging (LiDAR) applications. It is implemented in a zero-change standard 0.18-μm complementary metal oxide semiconductor process at the minimum cost by excluding any additional processing step for customized doping profiles. The SPAD is based on circular shaped P+/N-well junction of 8-μm diameter, and it achieves low breakdown voltage below 10 V so that the operation voltage of the single-photon sensor can be minimized. The quenching and reset circuit is integrated monolithically to capture photon-generated output pulses for measurement. A complete characterization of our single-photon sensor is provided.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7486
Author(s):  
Graciano Dieck-Assad ◽  
José Manuel Rodríguez-Delgado ◽  
Omar Israel González Peña

CMOS microelectronics design has evolved tremendously during the last two decades. The evolution of CMOS devices to short channel designs where the feature size is below 1000 nm brings a great deal of uncertainty in the way the microelectronics design cycle is completed. After the conceptual idea, developing a thinking model to understand the operation of the device requires a good “ballpark” evaluation of transistor sizes, decision making, and assumptions to fulfill the specifications. This design process has iterations to meet specifications that exceed in number of the available degrees of freedom to maneuver the design. Once the thinking model is developed, the simulation validation follows to test if the design has a good possibility of delivering a successful prototype. If the simulation provides a good match between specifications and results, then the layout is developed. This paper shows a useful open science strategy, using the Excel software, to develop CMOS microelectronics hand calculations to verify a design, before performing the computer simulation and layout of CMOS analog integrated circuits. The full methodology is described to develop designs of passive components, as well as CMOS amplifiers. The methods are used in teaching CMOS microelectronics to students of electronic engineering with industrial partner participation. This paper describes an exhaustive example of a low-voltage operational transconductance amplifier (OTA) design which is used to design an instrumentation amplifier. Finally, a test is performed using this instrumentation amplifier to implement a front-end signal conditioning device for CMOS-MEMS biomedical applications.


2017 ◽  
Vol 26 (09) ◽  
pp. 1750137 ◽  
Author(s):  
Vijay Kumar Sharma

This paper describes a novel complementary metal oxide semiconductor (CMOS) bootstrapped driver circuit for driving large resistive capacitive (RC) loads. The proposed bootstrapped driver reduces the leakage as well as process, voltage and temperature (PVT) variations from the boosted nodes with higher switching speed. Very large scale integration (VLSI) designers need boosted output for the logic circuits which are operating in ultra-deep submicron regime under widespread use of low voltage. Proposed CMOS bootstrapped driver circuit is easy in design; built with minimum number of transistors and have high boosting efficiency with sharp output performance. Comparative evaluations with existing bootstrapped driver circuits are reported. Simulation results are derived by HSPICE tool with predictive technology model (PTM) bulk CMOS process fabrication at 32 nm technology node. The ability of large leakage reduction makes this driver superior as compared to active drivers. An average of 96.97% leakage current is saved at nominal ultra-low voltage of 0.15 V. Monte-Carlo analysis indicates that the proposed bootstrapped driver has less sensitivity of PVT variations. The power consumption and delay sensitivities are reduced by 10 × and 4.12 × as compared to conventional circuit.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1272
Author(s):  
Zhihua Fan ◽  
Qinling Deng ◽  
Xiaoyu Ma ◽  
Shaolin Zhou

In recent decades, metasurfaces have emerged as an exotic and appealing group of nanophotonic devices for versatile wave regulation with deep subwavelength thickness facilitating compact integration. However, the ability to dynamically control the wave–matter interaction with external stimulus is highly desirable especially in such scenarios as integrated photonics and optoelectronics, since their performance in amplitude and phase control settle down once manufactured. Currently, available routes to construct active photonic devices include micro-electromechanical system (MEMS), semiconductors, liquid crystal, and phase change materials (PCMs)-integrated hybrid devices, etc. For the sake of compact integration and good compatibility with the mainstream complementary metal oxide semiconductor (CMOS) process for nanofabrication and device integration, the PCMs-based scheme stands out as a viable and promising candidate. Therefore, this review focuses on recent progresses on phase change metasurfaces with dynamic wave control (amplitude and phase or wavefront), and especially outlines those with continuous or quasi-continuous atoms in favor of optoelectronic integration.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1683
Author(s):  
Winai Jaikla ◽  
Fabian Khateb ◽  
Tomasz Kulej ◽  
Koson Pitaksuttayaprot

This paper proposes the simulated and experimental results of a universal filter using the voltage differencing differential difference amplifier (VDDDA). Unlike the previous complementary metal oxide semiconductor (CMOS) structures of VDDDA that is present in the literature, the present one is compact and simple, owing to the employment of the multiple-input metal oxide semiconductor (MOS) transistor technique. The presented filter employs two VDDDAs, one resistor and two grounded capacitors, and it offers low-pass: LP, band-pass: BP, band-reject: BR, high-pass: HP and all-pass: AP responses with a unity passband voltage gain. The proposed universal voltage mode filter has high input impedances and low output impedance. The natural frequency and bandwidth are orthogonally controlled by using separated transconductance without affecting the passband voltage gain. For a BP filter, the root mean square (RMS) of the equivalent output noise is 46 µV, and the third intermodulation distortion (IMD3) is −49.5 dB for an input signal with a peak-to peak of 600 mV, which results in a dynamic range (DR) of 73.2 dB. The filter was designed and simulated in the Cadence environment using a 0.18-µm CMOS process from Taiwan semiconductor manufacturing company (TSMC). In addition, the experimental results were obtained by using the available commercial components LM13700 and AD830. The simulation results are in agreement with the experimental one that confirmed the advantages of the filter.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 551
Author(s):  
Zhongjian Bian ◽  
Xiaofeng Hong ◽  
Yanan Guo ◽  
Lirida Naviner ◽  
Wei Ge ◽  
...  

Spintronic based embedded magnetic random access memory (eMRAM) is becoming a foundry validated solution for the next-generation nonvolatile memory applications. The hybrid complementary metal-oxide-semiconductor (CMOS)/magnetic tunnel junction (MTJ) integration has been selected as a proper candidate for energy harvesting, area-constraint and energy-efficiency Internet of Things (IoT) systems-on-chips. Multi-VDD (low supply voltage) techniques were adopted to minimize energy dissipation in MRAM, at the cost of reduced writing/sensing speed and margin. Meanwhile, yield can be severely affected due to variations in process parameters. In this work, we conduct a thorough analysis of MRAM sensing margin and yield. We propose a current-mode sensing amplifier (CSA) named 1D high-sensing 1D margin, high 1D speed and 1D stability (HMSS-SA) with reconfigured reference path and pre-charge transistor. Process-voltage-temperature (PVT) aware analysis is performed based on an MTJ compact model and an industrial 28 nm CMOS technology, explicitly considering low-voltage (0.7 V), low tunneling magnetoresistance (TMR) (50%) and high temperature (85 °C) scenario as the worst sensing case. A case study takes a brief look at sensing circuits, which is applied to in-memory bit-wise computing. Simulation results indicate that the proposed high-sensing margin, high speed and stability sensing-sensing amplifier (HMSS-SA) achieves remarkable performance up to 2.5 GHz sensing frequency. At 0.65 V supply voltage, it can achieve 1 GHz operation frequency with only 0.3% failure rate.


Sign in / Sign up

Export Citation Format

Share Document