scholarly journals Dynamic biophysical strain modulates proinflammatory gene induction in meniscal fibrochondrocytes

2006 ◽  
Vol 290 (6) ◽  
pp. C1610-C1615 ◽  
Author(s):  
Mario Ferretti ◽  
Shashi Madhavan ◽  
James Deschner ◽  
Birgit Rath-Deschner ◽  
Ewa Wypasek ◽  
...  

Fibrochondrocytes of meniscus adapt to changes in their biomechanical environment by mechanisms that are yet to be elucidated. In this study, the mechanoresponsiveness of fibrochondrocytes under normal and inflammatory conditions was investigated. Fibrochondrocytes from rat meniscus were exposed to dynamic tensile forces (DTF) at various magnitudes and frequencies. The mechanoresponsiveness was assessed by examining the expression of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), and matrix metalloproteinase-13 mRNA expression. The mRNA and protein analyses revealed that DTF at magnitudes of 5% to 20% did not induce proinflammatory gene expression. IL-1β induced a rapid increase in the iNOS mRNA. DTF strongly repressed IL-1β-dependent iNOS induction in a magnitude-dependent manner. Exposure to 15% DTF resulted in >90% suppression of IL-1β-induced mRNA within 4 h and this suppression was sustained for the ensuing 20 h. The mechanosensitivity of fibrochondrocytes was also frequency dependent and maximal suppression of iNOS mRNA expression was observed at rapid frequencies of DTF compared with lower frequencies. Like iNOS, DTF also inhibited IL-1β-induced expression of proinflammatory mediators involved in joint inflammation. The examination of temporal effects of DTF revealed that 4- or 8-h exposure of DTF was sufficient for its sustained anti-inflammatory effects during the next 20 or 16 h, respectively. Our findings indicate that mechanical signals act as potent anti-inflammatory signals, where their magnitude and frequency are critical determinants of their actions. Furthermore, mechanical signals continue attenuating proinflammatory gene transcription for prolonged periods of time after their removal.

Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3094 ◽  
Author(s):  
Jun Yin ◽  
Han Hyuk Kim ◽  
In Hyeok Hwang ◽  
Dong Hee Kim ◽  
Min Won Lee

Quercus mongolica Fisch. ex Ledeb. (QM) has been used as an oriental traditional medicine to relieve hemorrhoids, fever, and enteritis. We screened the inhibitory activities of the extracts and compounds (1–6) isolated from QM on the production of inflammatory cytokines and chemokines to evaluate their anti-inflammatory activities. Further, we evaluated the expression levels of cytokines, chemokines, and immune factors on pedunculagin (PC, 1), which was selected from isolated compounds (1–6) because of its potential anti-inflammation effect. Additionally, we evaluated whether the inflammation mitigation effects of PC (1) following UVB exposure in keratinocytes occurred because of nuclear factor (NF)-κB and signal transducer and activator of transcription (STAT)/Janus kinase (JAK) activation. PC (1) remarkably suppressed interleukin (IL)-6, IL-10, IL-13, and monocyte chemoattractant protein-1 (MCP-1) mRNA expression and reduced the mRNA expression level of Cyclooxygenase-2 (COX-2) and also reduced the phosphorylation of p38 mitogen-activated protein kinases (p38), c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) in a concentration-dependent manner.


2019 ◽  
Vol 9 (10) ◽  
pp. 2144 ◽  
Author(s):  
Woon Yong Choi ◽  
Jae-Hun Sim ◽  
Jung-Youl Lee ◽  
Do Hyung Kang ◽  
Hyeon Yong Lee

The Spirulina maxima exact from a non-thermal ultrasonic process (UE) contains 17.5 mg/g of total chlorophyll, compared to 6.24 mg/g of chlorophyll derived from the conventional 70% ethanol extraction at 80 °C for 12 h (EE). The UE also showed relatively low cytotoxicity against murine microglial cells (BV-2) and inhibited the production of the inflammatory mediators, NO and PGE2. The UE also effectively suppresses both mRNA expression and the production of pro-inflammatory cytokines, such as TNF-α, IL-6 and IL-1β, in a concentration-dependent manner. Notably, TNF-α gene and protein production were most strongly down-regulated, while IL-6 was the least affected by all ranges of treatment concentrations. This work first demonstrated a quantitative correlation between mRNA expression and the production of cytokines, showing that suppression of TNF-α gene expression was most significantly correlated with its secretion. These results clearly proved that the anti-inflammatory effects of Spirulina extract from a nonthermal ultrasonic process, which yielded high concentrations of intact forms of chlorophylls, were increased two-fold compared to those of conventional extracts processed at high temperature.


Author(s):  
Jun Yin ◽  
In Hyoek Hwang ◽  
Min Won Lee

Abstract Background Carpinus tschonoskii (CT) has been previously studied for various activities in the improvement of skin diseases. In the present study, we examined the in vitro anti-acne vulgaris (AV) effect of CT leaves (CTL) and tellimagrandin I (TI), one of the main ellagitannins from CT, including skin barrier improvement and 5α-reductase inhibitory activity. Methods To test the anti-AV activities of CTL and TI, firstly, anti-oxidative and anti-inflammatory activities including DPPH radical scavenging activity, nitric oxide (NO) inhibitory activity, and cytokines [interleukin (IL)-6 and IL-8] were tested. Skin barrier improvement experiments were tested using developing cornified envelope (CE) formation, and filaggrin mRNA expression level was determined by RT-PCR. The 5α-reductase inhibitory activity was determined by measuring the testosterone levels in rat liver microsomes. Results CTL and TI showed potent anti-oxidative activity and anti-inflammatory activities. Especially, the cytokine production inhibitory activities of TI were found to be similar to the positive control, epigallocatechin gallate (EGCG). CTL and TI enhanced the CE formation and filaggrin mRNA expression levels and showed potent activities compared to that in the positive control, 1.5 mM Ca2+. In additionally, CTL and TI showed 5α-reductase inhibitory activities in a dose-dependent manner. Conclusion The results showed that CTL and TI inhibit AV endogenous factors such as 5α-reductase and inflammatory cytokines and affect exogenous factors such as developing skin barrier function (CE and filaggrin levels). Therefore, CTL and TI may be plant-derived agent, promising in the treatment of acne vulgaris.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Noureddine Bribi ◽  
Francesca Algieri ◽  
Alba Rodriguez-Nogales ◽  
Jose Garrido-Mesa ◽  
Teresa Vezza ◽  
...  

Fumaria capreolatais used in traditional medicine in North Africa for its gastrointestinal and anti-inflammatory activities. The present study investigates the effects of total alkaloids extracted from the aerial parts ofFumaria capreolata(AFC) on LPS-induced production of proinflammatory mediators (IL-6, IL-1β, iNOS, TNF-α, COX-2, and MIP-2) in RAW264.7 cells. AFC significantly reduced the inflammatory response inhibiting the production of nitric oxide (NO) and IL-6 in a dose-dependent manner, without affecting the viability of cells, and downregulated mRNA expression of proinflammatory key players: IL-6, IL-1β, iNOS, TNF-α, and COX-2. AFC antinociceptive and anti-inflammatory properties were also evaluated on the acetic acid- and formalin-induced pain models in mice. AFC oral administration significantly inhibited acetic acid-induced writhes and reduced formalin-induced paw licking time. Therefore, AFC may be a potential candidate for the treatment of inflammatory diseases, such as colitis and arthritis.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Woo Seok Yang ◽  
Zubair Ahmed Ratan ◽  
Gihyeon Kim ◽  
Yunmi Lee ◽  
Mi-Yeon Kim ◽  
...  

TheCordycepsspecies has been a good source of compounds with anticancer and anti-inflammatory activities. Recently, we reported a novel compound (4-isopropyl-2,6-bis(1-phenylethyl)phenol, KTH-13) with anticancer activity isolated fromCordyceps bassianaand created several derivatives to increase its pharmacological activity. In this study, we tested one of the KTH-013 derivatives, 4-isopropyl-2,6-bis(1-phenylethyl)aniline 1 (KTH-13-AD1), with regard to anti-inflammatory activity under macrophage-mediated inflammatory conditions. KTH-13-AD1 clearly suppressed the production of nitric oxide (NO) and reactive oxygen species (ROS) in lipopolysaccharide (LPS) and sodium nitroprusside- (SNP-) treated macrophage-like cells (RAW264.7 cells). Similarly, this compound also reduced mRNA expression of inducible NO synthase (iNOS) and tumor necrosis factor-α(TNF-α), as analyzed by RT-PCR and real-time PCR. Interestingly, KTH-13-AD1 strongly diminished NF-κB-mediated luciferase activities and nuclear translocation of NF-κB family proteins. In accordance, KTH-13-AD1 suppressed the upstream signaling pathway of NF-κB activation, including IκBα, IKKα/β, AKT, p85/PI3K, and Src in a time- and dose-dependent manner. The autophosphorylation of Src and NF-κB observed during the overexpression of Src was also suppressed by KTH-13-AD1. These results strongly suggest that KTH-13-AD1 has strong anti-inflammatory features mediated by suppression of the Src/NF-κB regulatory loop.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Madhuvanthi Chandrakanthan ◽  
Shiroma M. Handunnetti ◽  
Galbada Sirimal Arachchige Premakumara ◽  
Selvaluxmy Kathirgamanathar

This study aimed at investigating the anti-inflammatory potential of essential oil from rhizome and leaf of Alpinia calcarata Rosc. (ACEO) with the focus of its topical anti-inflammatory activity along with its dominant compounds 1,8-cineole and α-terpineol using mouse ear edema model. ACEOs were analyzed by GC-MS. The anti-inflammatory activity was determined by studying the inhibition of overproduction of proinflammatory mediators—nitric oxide, reactive oxygen species, prostaglandins, cyclooxygenases, and cytokines induced by lipopolysaccharides in murine macrophages. Topical anti-inflammatory and antinociceptive activity was studied by 12-O-tetradecanoylphorbol-13-acetate (TPA) induced skin inflammation and formalin-induced pain model in mice, respectively. Rhizome oil has 1,8-cineole (31.08%), α-terpineol (10.31%), and fenchyl acetate (10.73%) as major compounds whereas the ACEO from leaves has 1,8-cineole (38.45%), a-terpineol (11.62%), and camphor (10%). ACEOs reduced the production of inflammatory mediators in vitro in a concentration-dependent manner. Further, ACEO and its major compounds reduced ear thickness, weight, myeloperoxidase, and cytokines significantly (p<0.01) in mouse ear. Dose-dependent reduction in flinching and licking in both the phases of pain sensation concludes the topical analgesic effect. Our findings suggest the potency of topical use of ACEOs for inflammatory disease conditions.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2706 ◽  
Author(s):  
Akshay Bisht ◽  
Martin Dickens ◽  
Kay Rutherfurd-Markwick ◽  
Rohith Thota ◽  
Anthony N. Mutukumira ◽  
...  

The anti-inflammatory effects of curcumin are well documented. However, the bioavailability of curcumin is a major barrier to its biological efficacy. Low-dose combination of complimentary bioactives appears to be an attractive strategy for limiting barriers to efficacy of bioactive compounds. In this study, the anti-inflammatory potential of curcumin in combination with chlorogenic acid (CGA), was investigated using human THP-1 macrophages stimulated with lipopolysaccharide (LPS). Curcumin alone suppressed TNF-α production in a dose-dependent manner with a decrease in cell viability at higher doses. Although treatment with CGA alone had no effect on TNF-α production, it however enhanced cell viability and co-administration with curcumin at a 1:1 ratio caused a synergistic reduction in TNF-α production with no impact on cell viability. Furthermore, an qRT-PCR analysis of NF-κB pathway components and inflammatory biomarkers indicated that CGA alone was not effective in reducing the mRNA expression of any of the tested inflammatory marker genes, except TLR-4. However, co-administration of CGA with curcumin, potentiated the anti-inflammatory effects of curcumin. Curcumin and CGA together reduced the mRNA expression of pro-inflammatory cytokines [TNF-α (~88%) and IL-6 (~99%)], and COX-2 (~92%), possibly by suppression of NF-κB (~78%), IκB-β-kinase (~60%) and TLR-4 receptor (~72%) at the mRNA level. Overall, co-administration with CGA improved the inflammation-lowering effects of curcumin in THP-1 cells.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245169
Author(s):  
Brent A. Stanfield ◽  
Todd Purves ◽  
Scott Palmer ◽  
Bruce Sullenger ◽  
Karen Welty-Wolf ◽  
...  

Introduction Anti-inflammatory cytokine IL-10 suppresses pro-inflammatory IL-12b expression after Lipopolysaccharide (LPS) stimulation in colonic macrophages, as part of the innate immunity Toll-Like Receptor (TLR)-NF-κB activation system. This homeostatic mechanism limits excess inflammation in the intestinal mucosa, as it constantly interacts with the gut flora. This effect is reversed with Histone Deacetylase 3 (HDAC3), a class I HDAC, siRNA, suggesting it is mediated through HDAC3. Given alveolar macrophages’ prominent role in Acute Lung Injury (ALI), we aim to determine whether a similar regulatory mechanism exists in the typically sterile pulmonary microenvironment. Methods Levels of mRNA and protein for IL-10, and IL-12b were determined by qPCR and ELISA/Western Blot respectively in naïve and LPS-stimulated alveolar macrophages. Expression of the NF-κB intermediaries was also similarly assessed. Experiments were repeated with AS101 (an IL-10 protein synthesis inhibitor), MS-275 (a selective class 1 HDAC inhibitor), or both. Results LPS stimulation upregulated all proinflammatory mediators assayed in this study. In the presence of LPS, inhibition of IL-10 and/or class 1 HDACs resulted in both synergistic and independent effects on these signaling molecules. Quantitative reverse-transcriptase PCR on key components of the TLR4 signaling cascade demonstrated significant diversity in IL-10 and related gene expression in the presence of LPS. Inhibition of IL-10 secretion and/or class 1 HDACs in the presence of LPS independently affected the transcription of MyD88, IRAK1, Rela and the NF-κB p50 subunit. Interestingly, by quantitative ELISA inhibition of IL-10 secretion and/or class 1 HDACs in the presence of LPS independently affected the secretion of not only IL-10, IL-12b, and TNFα, but also proinflammatory mediators CXCL2, IL-6, and MIF. These results suggest that IL-10 and class 1 HDAC activity regulate both independent and synergistic mechanisms of proinflammatory cytokine/chemokine signaling. Conclusions Alveolar macrophages after inflammatory stimulation upregulate both IL-10 and IL-12b production, in a highly class 1 HDAC-dependent manner. Class 1 HDACs appear to help maintain the balance between the pro- and anti-inflammatory IL-12b and IL-10 respectively. Class 1 HDACs may be considered as targets for the macrophage-initiated pulmonary inflammation in ALI in a preclinical setting.


2018 ◽  
Vol 46 (02) ◽  
pp. 435-452 ◽  
Author(s):  
Woo Seok Yang ◽  
Eunju Yang ◽  
Min-Jeong Kim ◽  
Deok Jeong ◽  
Deok Hyo Yoon ◽  
...  

Momordica charantia known as bitter melon is a representative medicinal plant reported to exhibit numerous pharmacological activities such as antibacterial, antidiabetic, anti-inflammatory, anti-oxidant, antitumor, and hypoglycemic actions. Although this plant has high ethnopharmacological value for treating inflammatory diseases, the molecular mechanisms by which it inhibits the inflammatory response are not fully understood. In this study, we aim to identify the anti-inflammatory mechanism of this plant. To this end, we studied the effects of its methanol extract (Mc-ME) on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Specifically, we evaluated nitric oxide (NO) production, mRNA expression of inflammatory genes, luciferase reporter gene activity, and putative molecular targets. Mc-ME blocked NO production in a dose-dependent manner in RAW264.7 cells; importantly, no cytotoxicity was observed. Moreover, the mRNA expression levels of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 were decreased by Mc-ME treatment in a dose-dependent manner. Luciferase assays and nuclear lysate immunoblotting analyses strongly indicated that Mc-ME decreases the levels of p65 [a nuclear factor (NF)-[Formula: see text]B subunit] and c-Fos [an activator protein (AP)-1 subunit]. Whole lysate immunoblotting assays, luciferase assays, and overexpression experiments suggested that transforming growth factor [Formula: see text]-activated kinase 1 (TAK1) is targeted by Mc-ME, thereby suppressing NF-[Formula: see text]B and AP-1 activity via downregulation of extracellular signal-regulated kinases (ERKs) and AKT. These results strongly suggest that Mc-ME exerts its anti-inflammatory activity by reducing the action of TAK1, which also affects the activation of NF-[Formula: see text]B and AP-1.


Sign in / Sign up

Export Citation Format

Share Document