New perspectives in a gustatory physiology: transduction, development, and plasticity

1997 ◽  
Vol 272 (1) ◽  
pp. C1-C26 ◽  
Author(s):  
R. E. Stewart ◽  
J. A. DeSimone ◽  
D. L. Hill

Major advances in the understanding of mammalian gustatory transduction mechanisms have occurred in the past decade. Recent research has revealed that a remarkable diversity of cellular mechanisms are involved in taste stimulus reception. These mechanisms range from G protein-and second messenger-linked receptor systems to stimulus-gated and stimulus-admitting ion channels. Contrary to widely held ideas, new data show that some taste stimuli interact with receptive sites that are localized on both the apical and basolateral membranes of taste cells. Studies of taste system development in several species indicate that the transduction pathways for some stimuli are modulated significantly during the early postnatal period. In addition, recent investigations of adult peripheral gustatory system plasticity strongly suggest that the function of the Na+ sensing system can be modulated by circulating hormones, growth factors, or cytokines.

Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 835-881 ◽  
Author(s):  
Jennifer K Inlow ◽  
Linda L Restifo

Abstract Affecting 1-3% of the population, mental retardation (MR) poses significant challenges for clinicians and scientists. Understanding the biology of MR is complicated by the extraordinary heterogeneity of genetic MR disorders. Detailed analyses of >1000 Online Mendelian Inheritance in Man (OMIM) database entries and literature searches through September 2003 revealed 282 molecularly identified MR genes. We estimate that hundreds more MR genes remain to be identified. A novel test, in which we distributed unmapped MR disorders proportionately across the autosomes, failed to eliminate the well-known X-chromosome overrepresentation of MR genes and candidate genes. This evidence argues against ascertainment bias as the main cause of the skewed distribution. On the basis of a synthesis of clinical and laboratory data, we developed a biological functions classification scheme for MR genes. Metabolic pathways, signaling pathways, and transcription are the most common functions, but numerous other aspects of neuronal and glial biology are controlled by MR genes as well. Using protein sequence and domain-organization comparisons, we found a striking conservation of MR genes and genetic pathways across the ∼700 million years that separate Homo sapiens and Drosophila melanogaster. Eighty-seven percent have one or more fruit fly homologs and 76% have at least one candidate functional ortholog. We propose that D. melanogaster can be used in a systematic manner to study MR and possibly to develop bioassays for therapeutic drug discovery. We selected 42 Drosophila orthologs as most likely to reveal molecular and cellular mechanisms of nervous system development or plasticity relevant to MR.


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 317
Author(s):  
Eitan Mijiritsky ◽  
Haya Drora Assaf ◽  
Oren Peleg ◽  
Maayan Shacham ◽  
Loredana Cerroni ◽  
...  

Growth factors (GFs) play a vital role in cell proliferation, migration, differentiation and angiogenesis. Autologous platelet concentrates (APCs) which contain high levels of GFs make them especially suitable for periodontal regeneration and facial rejuvenation. The main generations of APCs presented are platelet-rich plasma (PRP), platelet-rich fibrin (PRF) and concentrated growth factor (CGF) techniques. The purpose of this review is to provide the clinician with an overview of APCs’ evolution over the past decade in order to give reliable and useful information to be used in clinical work. This review summarizes the most interesting and novel articles published between 1997 and 2020. Electronic and manual searches were conducted in the following databases: Pubmed, Scopus, Cochrane Library and Embase. The following keywords were used: growth factors, VEGF, TGF-b1, PRP, PRF, CGF and periodontal regeneration and/or facial rejuvenation. A total of 73 articles were finally included. The review then addresses the uses of the three different techniques in the two disciplines, as well as the advantages and limitations of each technique. Overall, PRP is mainly used in cases of hard and soft tissue procedures, while PRF is used in gingival recession and the treatment of furcation and intrabony defects; CGF is mainly used in bone regeneration.


Author(s):  
Parul Christian ◽  
Emily R Smith ◽  
Sun Eun Lee ◽  
Ashley J Vargas ◽  
Andrew A Bremer ◽  
...  

ABSTRACT Critical advancement is needed in the study of human milk as a biological system that intersects and interacts with myriad internal (maternal biology) and external (diet, environment, infections) factors and its plethora of influences on the developing infant. Human-milk composition and its resulting biological function is more than the sum of its parts. Our failure to fully understand this biology in a large part contributes to why the duration of exclusive breastfeeding remains an unsettled science (if not policy). Our current understanding of human-milk composition and its individual components and their functions fails to fully recognize the importance of the chronobiology and systems biology of human milk in the context of milk synthesis, optimal timing and duration of feeding, and period of lactation. The overly simplistic, but common, approach to analyzing single, mostly nutritive components of human milk is insufficient to understand the contribution of either individual components or the matrix within which they exist to both maternal and child health. There is a need for a shift in the conceptual approach to studying human milk to improve strategies and interventions to support better lactation, breastfeeding, and the full range of infant feeding practices, particularly for women and infants living in undernourished and infectious environments. Recent technological advances have led to a rising movement towards advancing the science of human-milk biology. Herein, we describe the rationale and critical need for unveiling the multifunctionality of the various nutritional, nonnutritional, immune, and biological signaling pathways of the components in human milk that drive system development and maturation, growth, and development in the very early postnatal period of life. We provide a vision and conceptual framework for a research strategy and agenda to change the field of human-milk biology with implications for global policy, innovation, and interventions.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1453
Author(s):  
Joaquín Martí-Clúa

The synthetic halogenated pyrimidine analog, 5-bromo-2′-deoxyuridine (BrdU), is a marker of DNA synthesis. This exogenous nucleoside has generated important insights into the cellular mechanisms of the central nervous system development in a variety of animals including insects, birds, and mammals. Despite this, the detrimental effects of the incorporation of BrdU into DNA on proliferation and viability of different types of cells has been frequently neglected. This review will summarize and present the effects of a pulse of BrdU, at doses ranging from 25 to 300 µg/g, or repeated injections. The latter, following the method of the progressively delayed labeling comprehensive procedure. The prenatal and perinatal development of the cerebellum are studied. These current data have implications for the interpretation of the results obtained by this marker as an index of the generation, migration, and settled pattern of neurons in the developing central nervous system. Caution should be exercised when interpreting the results obtained using BrdU. This is particularly important when high or repeated doses of this agent are injected. I hope that this review sheds light on the effects of this toxic maker. It may be used as a reference for toxicologists and neurobiologists given the broad use of 5-bromo-2′-deoxyuridine to label dividing cells.


2021 ◽  
Vol 22 (11) ◽  
pp. 5692
Author(s):  
Mayra Colardo ◽  
Noemi Martella ◽  
Daniele Pensabene ◽  
Silvia Siteni ◽  
Sabrina Di Bartolomeo ◽  
...  

Neurotrophins constitute a family of growth factors initially characterized as predominant mediators of nervous system development, neuronal survival, regeneration and plasticity. Their biological activity is promoted by the binding of two different types of receptors, leading to the generation of multiple and variegated signaling cascades in the target cells. Increasing evidence indicates that neurotrophins are also emerging as crucial regulators of metabolic processes in both neuronal and non-neuronal cells. In this context, it has been reported that neurotrophins affect redox balance, autophagy, glucose homeostasis and energy expenditure. Additionally, the trophic support provided by these secreted factors may involve the regulation of cholesterol metabolism. In this review, we examine the neurotrophins’ signaling pathways and their effects on metabolism by critically discussing the most up-to-date information. In particular, we gather experimental evidence demonstrating the impact of these growth factors on cholesterol metabolism.


2008 ◽  
Vol 180 (2) ◽  
pp. 267-272 ◽  
Author(s):  
William Chia ◽  
W. Gregory Somers ◽  
Hongyan Wang

Over the past decade, many of the key components of the genetic machinery that regulate the asymmetric division of Drosophila melanogaster neural progenitors, neuroblasts, have been identified and their functions elucidated. Studies over the past two years have shown that many of these identified components act to regulate the self-renewal versus differentiation decision and appear to function as tumor suppressors during larval nervous system development. In this paper, we highlight the growing number of molecules that are normally considered to be key regulators of cell cycle events/progression that have recently been shown to impinge on the neuroblast asymmetric division machinery to control asymmetric protein localization and/or the decision to self-renew or differentiate.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2261 ◽  
Author(s):  
Karlos Ishac ◽  
Kenji Suzuki

The LifeChair is a smart cushion that provides vibrotactile feedback by actively sensing and classifying sitting postures to encourage upright posture and reduce slouching. The key component of the LifeChair is our novel conductive fabric pressure sensing array. Fabric sensors have been explored in the past, but a full sensing solution for embedded real world use has not been proposed. We have designed our system with commercial use in mind, and as a result, it has a high focus on manufacturability, cost-effectiveness and adaptiveness. We demonstrate the performance of our fabric sensing system by installing it into the LifeChair and comparing its posture detection accuracy with our previous study that implemented a conventional flexible printed PCB-sensing system. In this study, it is shown that the LifeChair can detect all 11 postures across 20 participants with an improved average accuracy of 98.1%, and it demonstrates significantly lower variance when interfacing with different users. We also conduct a performance study with 10 participants to evaluate the effectiveness of the LifeChair device in improving upright posture and reducing slouching. Our performance study demonstrates that the LifeChair is effective in encouraging users to sit upright with an increase of 68.1% in time spent seated upright when vibrotactile feedback is activated.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 676
Author(s):  
Tom L. Blundell

Over the past 60 years, the use of crystals to define structures of complexes using X-ray analysis has contributed to the discovery of new medicines in a very significant way. This has been in understanding not only small-molecule inhibitors of proteins, such as enzymes, but also protein or peptide hormones or growth factors that bind to cell surface receptors. Experimental structures from crystallography have also been exploited in software to allow prediction of structures of important targets based on knowledge of homologues. Crystals and crystallography continue to contribute to drug design and provide a successful example of academia–industry collaboration.


1997 ◽  
Vol 3 (3) ◽  
pp. E7 ◽  
Author(s):  
Barbara E. Lazio ◽  
Lawrence S. Chin

Growth factors play an important role in the development of the normal central nervous system as well as in the genesis of central nervous system tumors. Some of the more important growth factors and growth factor receptors, as they pertain to neurooncology, are reviewed in this article.


Sign in / Sign up

Export Citation Format

Share Document