Mitochondrial function and mitochondria-induced apoptosis in an overstimulated rat ovarian cycle

2005 ◽  
Vol 289 (6) ◽  
pp. E1101-E1109 ◽  
Author(s):  
Ana Navarro ◽  
Rafael Torrejón ◽  
Manuel J. Bández ◽  
José M. López-Cepero ◽  
Alberto Boveris

Female rats were treated with FSH (40 IU/kg) on the first and second diestrus days (D1 and D2) and with LH (40 IU/kg) on the proestrus (P) day to synchronize and maximize ovarian changes. Follicle area increased by 50% from D1 to P, and the estrus (E) phase showed multiple corpora lutea and massive apoptosis. Increased oxygen uptakes (42–102%) were determined in ovary slices and in isolated mitochondria in active state 3 along the proliferation phase (D1-D2-P) that returned to initial values in the E phase. Mitochondrial content and the electron transfer activities of complexes I and IV were also maximal in the P phase (20–79% higher than in D1). Production of NO by mitochondrial nitric oxide synthase (mtNOS), biochemically determined, and the mtNOS functional activity in regulating state 3 oxygen uptake were also maximal at P and 79–88% higher than at D1. The moderately increased rate of NO in the proliferative phase is associated with mitochondrial biogenesis, whereas the high rate of NO generation by mtNOS at phase P appears to trigger mitochondria-dependent apoptosis. The calculated fraction of ovary mitochondria in state 3 was at a minimal value at the P phase. Mitochondrial oxidative damage, with increased thiobarbituric acid-reactive substances and protein carbonyls, indicates progressive mitochondrial dysfunction between phases P and E. The roles of mitochondria as ATP provider, as a source of NO to signal for mitochondrial proliferation and mitochondria-dependent apoptosis, and as a source of O2− and H2O2 appear well adapted to serve the proliferation-apoptosis sequence of the ovarian cycle.

2008 ◽  
Vol 294 (2) ◽  
pp. R501-R509 ◽  
Author(s):  
Ana Navarro ◽  
José M. López-Cepero ◽  
Manuel J. Bández ◽  
María-Jesús Sánchez-Pino ◽  
Carmen Gómez ◽  
...  

Hippocampus mitochondrial dysfunction with impaired electron transfer and increased oxidative damage was observed upon rat aging. Hippocampal mitochondria of aged (12 mo) and senescent (20 mo) rats showed, compared with young (4 mo) rats, marked decreases in the rate of state 3 respiration with NAD-dependent substrates (32–51%) and in the activities of mitochondrial complexes I (57–73%) and IV (33–54%). The activity of mitochondrial nitric oxide synthase was also decreased, 53–66%, with age. These losses in enzymatic activity were more marked in the hippocampus than in brain cortex or in whole brain. The histochemical assay of mitochondrial complex IV in the hippocampus showed decreased staining upon aging. Oxidative damage, determined as the mitochondrial content of thiobarbituric-acid reactive substances (TBARS) and protein carbonyls, increased in aged and senescent hippocampus (66–74% in TBARS and 48–96% in carbonyls). A significant statistical correlation was observed between mitochondrial oxidative damage and enzymatic activity. Mitochondrial dysfunction with shortage of energy supply is considered a likely cause of dysfunction in aged hippocampus.


Author(s):  
Choudhuri D. ◽  
Bhattacharjee T.

Background : Toxicological consequences arising from exposure to mixtures of heavy metals especially at low, chronic and environmentally relevant doses are poorly recognised. In the present study, we evaluated effects of chronic exposure to combinations of three metals arsenic (As), cadmium (Cd) and lead (Pb) present frequently in drinking water on reproductive function and oxidative damage caused to reproductive organs of female rats. Method : Female rats were exposed to mixture of metals (As, Cdand Pb) for 90 consecutive days. The gain in body weight and weight of reproductive organs were recorded following autopsy on 91 stday. The oestrus cycle were monitored during entire treatment period. Numbers of corpora lutea, implantation sites, live fetus and survival of the fetus were evaluated in rats mated successfully with untreated male after completion of their respective treatment. Ovarian cholesterol, protein, ascorbic acid and enzyme Δ 5 -3β HSD levels were estimated. Serum levels of steroid hormones oestrogen and progesterone were estimated. Histopathological picture of both ovary and uterus were assessed. Levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidise (GPX) activity, amount of reduced glutathione (GSH) and malondyaldehyde (MDA) in blood, ovary and uterus were measured as biomarkers of oxidative stress. Results : The treated rats showed reduced body weight gain and reduction in the weight of ovary and uterus. Oestrus cycle was disrupted with continuous diestrous in treated animals. Number of corpora lutea, implantation sites and live fetus and the survival of fetus evaluate were reduced significantly in treated groups. The levels of ovarian cholesterol and ascorbic acid increased in treated rats with decrease Δ5 -3β HSD level. There was reduction in serum level of both the ovarian steroid hormones oestrogen and progesterone. The protein levels did not differ between the groups. There was a significant increase in levels of MDA and decrease in levels of all the antioxidant enzymes in treated group. Conclusion : The results revealed there was disruption to reproductive functions with decrease in stereoidogenic activity and associated oxidative stress in female rats treated with combination of mixture of metals (Cd, As and Pb) at low dose for 90 consecutive days.


2006 ◽  
Vol 290 (3) ◽  
pp. F600-F605 ◽  
Author(s):  
Rajiv Agarwal

Patients with diabetic nephropathy have a high rate of cardiovascular events and mortality. Nontraditional cardiovascular risk factors such as oxidative stress and inflammation are thought to be particularly important in mediating these events. Studies suggest that thiazolidinediones (TZDs) can reduce the level of nontraditional cardiovascular risk in people with or without diabetes mellitus. Whether this benefit occurs in patients with diabetic nephropathy is unknown. I hypothesized that the TZD pioglitazone will mitigate oxidative stress and inflammation compared with glipizide in patients with overt diabetic nephropathy. Markers of oxidative stress (plasma and urine albumin carbonyl and total protein carbonyls and malondialdehyde), inflammation [white blood cell (WBC) count, C-reactive protein (CRP), plasma IL-6, TNF-α], and plaque stability [matrix metalloproteinase 9 (MMP-9)] were measured in frozen samples obtained from patients with overt diabetic nephropathy participating in a randomized, open-label, blinded end-point, 16-wk trial with glipizide ( n = 22) or pioglitazone ( n = 22). Pioglitazone therapy in men with advanced diabetic nephropathy reduced WBC count by 1,125/μl ( P < 0.001), CRP by 41% ( P = 0.042), IL-6 by 38% ( P = 0.009), and MMP-9 by 29% ( P = 0.016). Specific differential reductions in WBC count of 1,251/μl ( P = 0.009) and reduction in IL-6 of 58% with pioglitazone ( P = 0.001) were seen compared with glipizide. There were no statistically significant changes observed with plasma TNF-α concentrations or markers of oxidative stress with either hypoglycemic agent. In conclusion, pioglitazone reduces proinflammatory markers in patients with overt diabetic nephropathy, which indicates potentially beneficial effects on overall cardiovascular risk. This surrogate end point needs to be confirmed in trials designed to demonstrate cardiovascular protection.


2016 ◽  
Vol 35 (12) ◽  
pp. 1276-1285 ◽  
Author(s):  
R Yang ◽  
Y-M Wang ◽  
L Zhang ◽  
Z-M Zhao ◽  
J Zhao ◽  
...  

T-2 toxin, a naturally produced Type A trichothecene mycotoxin, has been shown to damage the reproductive and developmental functions in livestocks. However, whether T-2 toxin can disturb the pubertal onset and development following prepubertal exposure remains unclear. To clarify this point, infantile female Sprague–Dawley rats were given a daily intragastric administration of vehicle or T-2 toxin at a dose of 375 μg/kg body weight for 5 consecutive days from postnatal day (PND) 15–19 (PND15–PND19). The days of vaginal opening, first diestrus, and first estrus in regular estrous cycle were advanced following T-2 toxin treatment, indicating prepubertal exposure to T-2 toxin induced the advancement of puberty onset. The relative weights of uterus and ovaries and the incidence of corpora lutea were all increased in T-2 toxin-treated rats; serum hormone levels of luteinizing hormone and estradiol and the messenger RNA expressions of gonadotropin-releasing hormone (GnRH) and GnRH receptor also displayed marked increases following exposure to T-2 toxin, all of which were well consistent with the manifestations of the advanced puberty onset. In conclusion, the present study reveals that prepubertal exposure to a high level of T-2 toxin promotes puberty onset in infantile female rats by advancing the initiation of hypothalamic–pituitary–gonadal axis function in female rats.


1987 ◽  
Vol 112 (2) ◽  
pp. 317-322 ◽  
Author(s):  
J. E. Sánchez-Criado ◽  
K. Ochiai ◽  
I. Rothchild

ABSTRACT Adult female rats were hypophysectomized and their pituitary glands autotransplanted beneath the left kidney capsule on day 2 (day 1 was the day of ovulation). In such rats the pituitary secretes prolactin fairly constantly and the corpora lutea secrete progesterone for several months. To induce the luteolytic effect of prolactin the rats were first injected s.c. with 2-bromo-α-ergocryptine (CB-154) on cycle days 12, 13 and 14 (i.e. 10, 11 and 12 days after operation) to depress prolactin secretion, and then with CB-154 vehicle (70% ethanol) daily until cycle day 21, to allow prolactin secretion to resume. One ovary was removed from each rat on day 15 and the remaining one on day 22. The mean (± s.e.m.) weight of the corpora lutea on day 15 was 1·46±0·06 mg and 0·98±0·07 mg on day 22 (n = 17). In contrast, rats in which the CB-154 treatment was maintained to day 21 had corpora lutea which weighed 1·31 ±0·09 on day 15 and 1·47 ±0·08 mg on day 22 (n = 15). To investigate whether indomethacin, a prostaglandin synthesis inhibitor, affected the luteolytic action of prolactin, the experiment was repeated, but on day 15 (after the removal of one ovary) the groups in which CB-154 treatment was stopped, as well as the group in which CB-154 treatment was maintained, were each divided into two groups. In one, indomethacin-containing silicone elastomer wafers and, in the other, blank silicone elastomer wafers, were placed within the bursa of the remaining ovary. There were no differences in corpus luteum weight on day 15 among any of these groups and the two groups of the first experiment. There was no significant difference in corpus luteum weight between day 15 and day 22 in any of the six groups except for the two groups treated with the CB-154 vehicle and not with indomethacin. Thus, treatment with indomethacin prevented the fall in corpus luteum weight associated with the discontinuation of CB-154 treatment. Serum prolactin levels fell until day 15 in all rats and remained low in those in which the CB-154 treatment was maintained to day 21, but returned to control values in those treated with vehicle after day 14. Serum progesterone levels fell and remained low in all groups. Indomethacin treatment had no effect on the levels of either serum prolactin or progesterone. We conclude that some of the pharmacological effects of indomethacin are to prevent prolactin-induced luteolysis, and we suggest that prolactin induces rapid regression of the corpus luteum by stimulating intraluteal prostaglandin production or by being necessary for the effect of luteolytic prostaglandins. J. Endocr. (1987) 112, 317–322


1991 ◽  
Vol 260 (3) ◽  
pp. E464-E470 ◽  
Author(s):  
R. R. Magness ◽  
C. R. Rosenfeld ◽  
B. R. Carr

Elevated uterine blood flow is associated with increases in local estrogen-to-progesterone ratios during the follicular phase of the ovarian cycle and late pregnancy. Because protein kinase C (PKC) activation increases arterial tone, decreased PKC activity may mediate vasodilation. Therefore, we determined uterine (UA) and systemic artery (SA, omental) PKC activity (pmol.mg protein-1.min-1) during the follicular (n = 6), early luteal (n = 4), and late luteal (n = 3) phases of the sheep ovarian cycle, and at 110 +/- 3 (n = 4) and 130 +/- 1 (n = 8) (+/- SE) days of ovine gestation. The stage of the ovarian cycle was verified by the presence of follicles (high estrogen) or corpora lutea (high progesterone) on the ovary and by plasma estrogen and progesterone concentrations. UA-PKC activity (pmol.mg protein-1.min-1) during the follicular phase was 100 +/- 18 and increased progressively to 155 +/- 28 during the early luteal phase and to 219 +/- 37 (P less than 0.05) during the late luteal phase; SA-PKC activity was unchanged. A local utero-ovarian relationship was observed, i.e., UA-PKC activity was lower (P less than 0.001) in UA ipsilateral to ovaries with only follicles (105 +/- 14) when compared with UA adjacent to ovaries with corpora lutea (224 +/- 26), which was similar to SA-PKC activity (184 +/- 35). UA-PKC activity fell from 344 +/- 70 at 110 days to 109 +/- 12 at 130 days gestation (P less than 0.05); SA-PKC activity was unchanged. During the ovarian cycle and latter one-third of ovine pregnancy, increased estrogen production is associated with decreased UA-PKC activity; thus local ovarian and placental steroids may alter PKC activity, thereby regulating UA tone and blood flow.


1996 ◽  
Vol 24 (4) ◽  
pp. 358-362 ◽  
Author(s):  
K Kanayama ◽  
H Osada ◽  
K Nariai ◽  
T Endo

The dose-response relationship for the inhibitory effect of indomethacin on implantation and continuance of pregnancy was examined in four groups of rabbits administered with indomethacin (2.5, 5.0, 7.5 and 10.0 mg/kg) during the implantation period and compared with a control group. Implanted fetuses and corpora lutea were counted by laparotomy, and the number of offspring born was noted. The inhibitory effect of indomethacin on implantation was found to be dose–dependent, and the birth rate decreased in the indomethacin groups compared with the control group. As a result, even where implantation had been achieved, death of the implanted fetuses occurred at a high rate in rabbits administered with indomethacin during the implantation period.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Yuri Karen Sinzato ◽  
Gustavo Tadeu Volpato ◽  
Isabela Lovizutto Iessi ◽  
Aline Bueno ◽  
Iracema de Mattos Paranhos Calderon ◽  
...  

The aim of this study was to assess placental changes and reproductive outcomes in neonatally induced mild diabetic dams and fetal development in their offspring. At birth, female rats were assigned either to control or diabetic group (100 mg of streptozotocin/Kg, subcutaneously). At adulthood, the female rats were mated. During pregnancy, the blood glucose levels and glucose and insulin tolerance tests were performed. At term, maternal reproductive outcomes, fetal and placental weight, and placental morphology were analyzed. Diabetic rats had smaller number of living fetuses, implantations and corpora lutea, and increased rate of embryonic loss. Placenta showed morphometric alterations in decidua area. Our results showed that mild diabetes was sufficient to trigger alterations in maternal organism leading to impaired decidua development contributing to failure in embryonic implantation and early embryonic losses. Regardless placental decidua alteration, the labyrinth, which is responsible for the maternal-fetal exchanges, showed no morphometric changes contributing to an appropriate fetal development, which was able to maintain normal fetal weight at term in mild diabetic rats. Thus, this experimental model of diabetes induction at the day of birth was more effective to reproduce the reproductive alterations of diabetic women.


2021 ◽  
Vol 54 (1) ◽  
pp. 52-61
Author(s):  
NR Shepelskaya ◽  
YaV Kolyanchuk

Aim. Studying the effect of generic pesticides cyproconazole (98 %) and two samples of epoxiconazole (epoxiconazole 1 — 95,75 % and epoxiconazole 2 — 98,7 %) on the reproductive system of male and female Wistar Han rats at the level of the organism when exposed during gametogenesis, identification and characterization of their hazard, as well as assessment of the risk of reproductive toxicity of these compounds. Materials and Methods. The test samples were administered daily (5 days a week) by oral gavage at doses of 0.2 and 2.0 mg/kg for cyproconazole and 0.5 and 2.0 mg/kg for epoxiconazoles during 11 weeks for males, and 10 weeks for females. Also, there were kept intact males and females, intended for crossover mating with experimental animals. After the end of the exposure, functional indicators of the state of the gonads and the ability of animals to reproduce offspring were studied. The duration and the frequency of each stage of the estrous cycle in female rats and the number of motile sperm, the total amount of sperm and the number of abnormal forms of germ cells of the male rats were studied. The reproductive function state in females was evaluated on day 20th of pregnancy. Thereby the number of corpora lutea in the ovaries, number of alive, dead and resorbed foetuses and embryos, the foetus weight, total weight of litters were registered. The studies were carried out in accordance with the recommendations of the Bioethics Commission and the Centre’s standard operating procedures, developed in accordance with the recommendations and requirements of Good Laboratory Practice (GLP). Conclusions. Test substances at a maximum dose of 2.0 mg/kg of body weight have reproductive toxicity and endocrine-disruptive effect, exerting a significant antiandrogenic effect on males and antiestrogenic effect on female rats. No-observed-adverse-effect-level (NOАEL) for gonadal and reproductive toxicity for male and female Wistar Han rats were established. They are 0.2 mg/kg body weight for cyproconazole and 0.5 mg/kg body weight for epoxiconazole. Key Words: azole fungicides, cyproconazole, epoxiconazole, reproductive toxicity, antiandrogenic and antiestrogenic effects, Wistar Han rats.


Author(s):  
Buddhadeb Ghosh ◽  
Ravi Kant Sharma ◽  
Suman Yadav ◽  
Ankita Randev

Both aluminium and ethanol are pro-oxidants and toxic. Uncontrolled use of aluminium and increasing trends of ethanol consumption in India increased the chance of coexposure to aluminium and ethanol. There are possibilities, that both of them follow common mechanisms to produce reproductive toxicity. The present study was planned to identify the effects of aluminium administration on the microscopic structure of ovary and to clarify any possible protection conferred by the concomitant administration of ethanol. Sixteen female rats divided into one control and three experimental groups exposed to aluminium (4.2mg/kg body weight) and ethanol (1gm/kg body weight) for 3 months. After the exposure period, ovaries were processed for light microscopic examination. Ovary showed significant atretic follicles with degenerated ova and vacuolation. Rupture of zona pellucida in oocyte seen in aluminium treated animals. Ethanol treated group showing absence of growing follicles, increased large corpora lutea. Dilated and congested vessels were observed in the growing follicle. The effects of combined administration of aluminium and ethanol treated groups showed with acute degeneration of growing follicles, with desquamation of pyknotic granulosa cells and degenerated oocyte. Multiple vacuoles of degenerated granulosa cells with dilated congested vessels and edema seen. Hyaline material seen inside the degenerating follicles. It has been suggested that the ethanol induced augmentation of impacts of aluminium on the Ovary.


Sign in / Sign up

Export Citation Format

Share Document