Cellular signalling crosstalk between different cardiac cell populations - An insight into the role of exosomes in the heart diseases and therapy

Author(s):  
Binh Yen Nguyen ◽  
Tayyiba Azam ◽  
Xin Wang

Exosomes are a subgroup of extracellular bilayer membrane nanovesicles that are enriched in a variety of bioactive lipids, receptors, transcription factors, surface proteins, DNA and noncoding RNAs. They have been well-recognised to play essential roles in mediating intercellular signalling by delivering bioactive molecules from host cells to regulate the physiological processes of recipient cells. In the context of heart diseases, accumulating studies have indicated that exosome-carried cellular proteins and noncoding RNA derived from different types of cardiac cells, including cardiomyocytes, fibroblasts, endothelial cells, immune cells, adipocytes and resident stem cells have pivotal roles in cardiac remodelling under disease conditions such as cardiac hypertrophy, diabetic cardiomyopathy and MI. In addition, exosomal contents derived from stem cells have been shown to be beneficial for regenerative potential of the heart. In this review, we will discuss current understanding of the role of exosomes in cardiac communication, with a focus on cardiovascular pathophysiology and perspectives for their potential uses as cardiac therapies.

Nano LIFE ◽  
2019 ◽  
Vol 09 (03) ◽  
pp. 1941004
Author(s):  
Xin Xiong ◽  
Feby Savira ◽  
Kevin W Huang ◽  
Zuoren Yu ◽  
Bing Hui Wang

Stem cell therapy has been tested for cardiac disease therapy for decades. Initially, researchers only considered stem cells’ differentiative ability to repair damaged cardiac tissue. However, studies have now uncovered novel mechanisms contributing to stem cell healing properties to repair injured cardiac tissue, including via paracrine signaling and exosome secretions, leading to amelioration of cardiac remodeling and enhancement of proliferation, regeneration and survival of stem cell-derived cardiac cells. Understanding these underlying mechanisms could help researchers utilize stem cells as a therapeutic strategy for cardiac disease effectively and address the current limitations, mainly surrounding its survival and differentiative ability in the cardiac milieu. This review will discuss the known potential mechanisms underlying the role of stem cells in contributing to and for the treatment of heart diseases.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Nima Purvis ◽  
Andrew Bahn ◽  
Rajesh Katare

Stem cells are considered as the next generation drug treatment in patients with cardiovascular disease who are resistant to conventional treatment. Among several stem cells used in the clinical setting, cardiac stem cells (CSCs) which reside in the myocardium and epicardium of the heart have been shown to be an effective option for the source of stem cells. In normal circumstances, CSCs primarily function as a cell store to replace the physiologically depleted cardiovascular cells, while under the diseased condition they have been shown to experimentally regenerate the diseased myocardium. In spite of their major functional role, molecular mechanisms regulating the CSCs proliferation and differentiation are still unknown. MicroRNAs (miRs) are small, noncoding RNA molecules that regulate gene expression at the posttranscriptional level. Recent studies have demonstrated the important role of miRs in regulating stem cell proliferation and differentiation, as well as other physiological and pathological processes related to stem cell function. This review summarises the current understanding of the role of miRs in CSCs. A deeper understanding of the mechanisms by which miRs regulate CSCs may lead to advances in the mode of stem cell therapies for the treatment of cardiovascular diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Guang Yang ◽  
Chunsheng Lin

Background. Myocardial infarction (MI) was a severe cardiovascular disease resulted from acute, persistent hypoxia, or ischemia condition. Additionally, MI generally led to heart failure, even sudden death. A multitude of research studies proposed that long noncoding RNAs (lncRNAs) frequently participated in the regulation of heart diseases. The specific function and molecular mechanism of SOX2-OT in MI remained unclear. Aim of the Study. The current research was aimed to explore the role of SOX2-OT in MI. Methods. Bioinformatics analysis (DIANA tools and Targetscan) and a wide range of experiments (CCK-8, flow cytometry, RT-qPCR, luciferase reporter, RIP, caspase-3 activity, trans-well, and western blot assays) were adopted to investigate the function and mechanism of SOX2-OT. Results. We discovered that hypoxia treatment decreased cell viability but increased cell apoptosis. Besides, lncRNA SOX2-OT expression was upregulated in hypoxic HCMs. Hereafter, we confirmed that SOX2-OT could negatively regulate miR-27a-3p levels by directly binding with miR-27a-3p, and miR-27a-3p also could negatively regulate SOX2-OT levels. Furthermore, knockdown of SOX2-OT promoted cell proliferation, migration, and invasion, but limited cell apoptosis. However, these effects were reversed by anti-miR-27a-5p. Besides, we verified that miR-27a-3p binding with the 3′UTR of TGFBR1 and SOX2-OT regulated TGFβR1 level by collaborating with miR-27a-3p in HCMs. Eventually, rescue assays validated that the influence of SOX2-OT silence or miR-27a-3p overexpression on cellular processes in cardiomyocytes injury was counteracted by TGFBR1 overexpression. Conclusions. Long noncoding RNA SOX2-OT exacerbated hypoxia-induced cardiomyocytes injury by regulating miR-27a-3p/TGFβR1 axis, which may provide a novel insight for heart failure treatment.


2014 ◽  
Vol 82 (4) ◽  
pp. 1683-1691 ◽  
Author(s):  
Anna Kallio ◽  
Kirsi Sepponen ◽  
Philippe Hermand ◽  
Philippe Denoël ◽  
Fabrice Godfroid ◽  
...  

ABSTRACTPneumococcal adherence to mucosal surfaces is a critical step in nasopharyngeal colonization, but so far few pneumococcal adhesins involved in the interaction with host cells have been identified. PhtA, PhtB, PhtD, and PhtE are conserved pneumococcal surface proteins that have proven promising as vaccine candidates. One suggested virulence function of Pht proteins is to mediate adherence at the respiratory mucosa. In this study, we assessed the role of Pht proteins in pneumococcal binding to respiratory epithelial cells. Pneumococci were incubated with human nasopharyngeal epithelial cells (Detroit-562) and lung epithelial cells (A549 and NCI-H292), and the proportion of bound bacteria was measured by plating viable counts. Strains R36A (unencapsulated), D39 (serotype 2), 43 (serotype 3), 4-CDC (serotype 4), and 2737 (serotype 19F) with one or more of the four homologous Pht proteins deleted were compared with their wild-type counterparts. Also, the effect of anti-PhtD antibodies on the adherence of strain 2737 to the respiratory epithelial cells was studied. Our results suggest that Pht proteins play a role in pneumococcal adhesion to the respiratory epithelium. We also found that antibody to PhtD is able to inhibit bacterial attachment to the cells, suggesting that antibodies against PhtD present at mucosal surfaces might protect from pneumococcal attachment and subsequent colonization. However, the relative significance of Pht proteins to the ability of pneumococci to bindin vitroto epithelial cells depends on the genetic background and the capsular serotype of the strain.


2018 ◽  
Vol 46 (4) ◽  
pp. 789-796 ◽  
Author(s):  
Marissa L. Maciej-Hulme ◽  
Mark A. Skidmore ◽  
Helen P. Price

The leishmaniases are a group of neglected tropical diseases caused by parasites from the Leishmania genus. More than 20 Leishmania species are responsible for human disease, causing a broad spectrum of symptoms ranging from cutaneous lesions to a fatal visceral infection. There is no single safe and effective approach to treat these diseases and resistance to current anti-leishmanial drugs is emerging. New drug targets need to be identified and validated to generate novel treatments. Host heparan sulfates (HSs) are abundant, heterogeneous polysaccharides displayed on proteoglycans that bind various ligands, including cell surface proteins expressed on Leishmania promastigote and amastigote parasites. The fine chemical structure of HS is formed by a plethora of specific enzymes during biosynthesis, with various positions (N-, 2-O-, 6-O- and 3-O-) on the carbon sugar backbone modified with sulfate groups. Post-biosynthesis mechanisms can further modify the sulfation pattern or size of the polysaccharide, altering ligand affinity to moderate biological functions. Chemically modified heparins used to mimic the heterogeneous nature of HS influence the affinity of different Leishmania species, demonstrating the importance of specific HS chemical sequences in parasite interaction. However, the endogenous structures of host HSs that might interact with Leishmania parasites during host invasion have not been elucidated, nor has the role of HSs in host–parasite biology. Decoding the structure of HSs on target host cells will increase understanding of HS/parasite interactions in leishmaniasis, potentiating identification of new opportunities for the development of novel treatments.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 401-401
Author(s):  
Chihwa Kim ◽  
Wu Wan ◽  
Ahmed Abdel-Latif ◽  
Marcin Wysoczynski ◽  
Magdalena Kucia ◽  
...  

Abstract Abstract 401 Stromal derived factor-1 (SDF-1), when employed at supra-physiological concentrations, is a potent in vitro chemoattractant for hematopoietic stem progenitor cells (HSPCs). However, because this chemokine is extremely sensitive to degradation by proteolytic enzymes (e.g., MMP-2) and as we have observed myeloablative conditioning for hematopoietic transplantation induces a highly proteolytic microenvironment in bone marrow (BM), SDF-1 secreted by stromal cells and osteoblasts must be rapidly degraded under these conditions. While a role for the SDF-1–CXCR4 axis in retention of HSPCs in BM is undisputed, the role of SDF-1 in the homing of HSPCs in a highly proteolytic microenvironment is somewhat less certain and some redundant homing mechanisms may exist. This latter notion is supported by several observations, such as that i) CXCR4-/- fetal liver HSPCs may home to BM in an SDF-1- independent manner, ii) homing of murine HSPCs made refractory to SDF-1 by incubation and co-injection with a CXCR4 receptor antagonist is normal or only mildly reduced, and iii) HSPCs in which CXCR4 has been knocked down by means of an SDF-1 intrakine strategy are able to engraft even in lethally irradiated recipients. To reappraise the role of SDF-1 and other new potential factors in homing of HSPCs, we employed several complementary strategies. First we measured expression of SDF-1 mRNA in BM at 24 and 48 hours after lethal irradiation and observed a ∼3-fold increase. By contrast, the SDF-1 protein level in BM, evaluated by ELISA, surprisingly decreased as compared to non-irradiated mice. Next, we found that after blocking SDF-1 with AMD3100 treatment, conditioned media (CM) from irradiated BM cells still chemoattracted HSPCs. This SDF-1- independent chemotactic activity was resistant to heat inactivation, but was eliminated after stripping by activated charcoal, suggesting the possible involvement of bioactive lipids. Therefore, we began a search for unknown chemoattractants that could direct trafficking of HSPCs, with bioactive lipids as strong candidates, because, as small molecules, they are resistant to proteases. We focused especially on ceramide-1 phosphate (C1P) and sphingosine-1 phosphate (S1P), which are products of membrane-lipids metabolism. It is known that C1P, in contrast to S1P, is retained intracellularly and can be released mostly from damaged cells. Mass spectrometry (MS) analysis revealed that the major isoforms of C1P were detected at higher concentration in supernatant from irradiated BM when compared to supernatant from non-irradiated BM, which suggests that this bioactive lipid and chemoattractant is released from “leaky” BM cells damaged by myeloablative irradiation. We report here for the first time that C1P i) is a strong chemoatttractant for murine and human HSPCs, ii) activates phosphorylation of MAPKp42/44 and AKT in these cells, iii) induces expression of matrix metallopeptidases (MMPs), and iv) modulates adhesion of HSPCs to stroma and endothelium. Furthermore, in direct clonogenic studies, we did not observe any toxic effect of C1P on proliferation of murine and human clonogenic progenitors. We therefore propose a novel paradigm in which C1P is a chemoattractant for HSPCs that, in contrast to SDF-1, is highly resistant to proteolysis. In the proteolytic microenvironment induced in BM after myeloablative radio/chemotherapy, it could play along with SDF-1 an important and, until now, unrecognized role in the homing of HSPCs after transplantation. Furthermore, C1P secreted by damaged cells in other organs (e.g., infarcted myocardium) may in these highly proteolytic or necrotic microenvironments play a similar role in the homing of circulating stem cells involved in regeneration. Disclosures: No relevant conflicts of interest to declare.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1010
Author(s):  
Bruce A. Stanton

The focus of this brief review is to describe the role of noncoding regulatory RNAs, including short RNAs (sRNA), transfer RNA (tRNA) fragments and microRNAs (miRNA) secreted in extracellular vesicles (EVs), in inter-kingdom communication between bacteria and mammalian (human) host cells. Bacteria secrete vesicles that contain noncoding regulatory RNAs, and recent studies have shown that the bacterial vesicles fuse with and deliver regulatory RNAs to host cells, and similar to eukaryotic miRNAs, regulatory RNAs modulate the host immune response to infection. Recent studies have also demonstrated that mammalian cells secrete EVs containing miRNAs that regulate the gut microbiome, biofilm formation and the bacterial response to antibiotics. Thus, as evidence accumulates it is becoming clear that the secretion of noncoding regulatory RNAs and miRNAs in extracellular vesicles is an important mechanism of bidirectional communication between bacteria and mammalian (human) host cells. However, additional research is necessary to elucidate how noncoding regulatory RNAs and miRNA secreted in extracellular vesicles mediate inter-kingdom communication.


2018 ◽  
Vol 314 (6) ◽  
pp. C712-C720 ◽  
Author(s):  
Xiaojuan Xu ◽  
Mengmeng Guo ◽  
Na Zhang ◽  
Shoudong Ye

Although long noncoding RNAs (lncRNAs) are emerging as new modulators in the fate decision of pluripotent stem cells, the functions of specific lncRNAs remain unclear. Here, we found that telomeric RNA (TERRA or TelRNA), one type of lncRNAs, is highly expressed in mouse embryonic stem cells (mESCs) but declines significantly upon differentiation. TERRA is induced by the Wnt/β-catenin signaling pathway and can reproduce its self-renewal-promoting effect when overexpressed. Further studies revealed that T cell factor 3 ( TCF3) is a potential downstream target of TERRA and mediates the effect of TERRA in mESC maintenance. TERRA inhibits TCF3 transcription, while enforced TCF3 expression abrogates the undifferentiated state of mESCs supported by TERRA. Accordingly, the transcripts of the pluripotency genes Esrrb, Tfcp2l1, and Klf2, repressed by TCF3 in mESCs, are increased in TERRA-overexpressing cells. Our study therefore highlights the important role of TERRA in mESC maintenance and also uncovers a mechanism by which TERRA promotes self-renewal. These data will expand our understanding of the pluripotent regulatory network of ESCs.


Sign in / Sign up

Export Citation Format

Share Document