Substrate dependence of myocardial response to hypoxia in the presence of theophylline

1983 ◽  
Vol 245 (2) ◽  
pp. H363-H367
Author(s):  
T. R. Snow ◽  
T. Caspar

The experiments reported here were designed to determine whether stimulating glycogenolysis with theophylline affects the ability of isolated rabbit papillary muscles to sustain and recover from a transient hypoxic episode (15 min). Different substrates [glucose (Glc), pyruvate (Pyr), and butyrate (BA)] were used to either support the glycogen levels or permit their depletion. To evaluate the metabolic consequences, the dynamic relation (coupling coefficient) between the oxidation-reduction level of the intramitochondrial pyridine nucleotide NADH and the mechanical power was determined using a microfluorometer. In the absence of theophylline, the presence of Glc was associated with a smaller decrease in developed tension (tau) during the hypoxic period (Glc 53 +/- 5%) when compared with the nonglycolytic substrates (Pyr 33 +/- 5% or BA 31 +/- 6%). The extent of the recovery was not dependent on the available substrate. The addition of theophylline was accompanied by a substrate-dependent increase in tau: Glc 153 +/- 9%, Pyr 134 +/- 9%, and BA 116 +/- 7%. Theophylline increased the impact of the hypoxic episode on mechanical performance: Glc 17 +/- 4%, Pyr 4 +/- 4%, and BA 6 +/- 5%. With Glc, recovery was comparable to control. For the nonglycolytic substrates, recovery of mechanical function was depressed (Pyr 69 +/- 7%, BA 71 +/- 6%), and there was a significant loss of metabolic sensitivity. These data show that the inotropic response to theophylline is in part determined by the available substrate; theophylline exacerbates the impact of a hypoxic episode, and this effect may be due to the metabolic consequences of its presence.

Author(s):  
Kulwant Singh ◽  
Gurbhinder Singh ◽  
Harmeet Singh

The weight reduction concept is most effective to reduce the emissions of greenhouse gases from vehicles, which also improves fuel efficiency. Amongst lightweight materials, magnesium alloys are attractive to the automotive sector as a structural material. Welding feasibility of magnesium alloys acts as an influential role in its usage for lightweight prospects. Friction stir welding (FSW) is an appropriate technique as compared to other welding techniques to join magnesium alloys. Field of friction stir welding is emerging in the current scenario. The friction stir welding technique has been selected to weld AZ91 magnesium alloys in the current research work. The microstructure and mechanical characteristics of the produced FSW butt joints have been investigated. Further, the influence of post welding heat treatment (at 260 °C for 1 h) on these properties has also been examined. Post welding heat treatment (PWHT) resulted in the improvement of the grain structure of weld zones which affected the mechanical performance of the joints. After heat treatment, the tensile strength and elongation of the joint increased by 12.6 % and 31.9 % respectively. It is proven that after PWHT, the microhardness of the stir zone reduced and a comparatively smoothened microhardness profile of the FSW joint obtained. No considerable variation in the location of the tensile fracture was witnessed after PWHT. The results show that the impact toughness of the weld joints further decreases after post welding heat treatment.


2021 ◽  
pp. 109963622110338
Author(s):  
Yury Solyaev ◽  
Arseniy Babaytsev ◽  
Anastasia Ustenko ◽  
Andrey Ripetskiy ◽  
Alexander Volkov

Mechanical performance of 3d-printed polyamide sandwich beams with different type of the lattice cores is investigated. Four variants of the beams are considered, which differ in the type of connections between the elements in the lattice structure of the core. We consider the pantographic-type lattices formed by the two families of inclined beams placed with small offset and connected by stiff joints (variant 1), by hinges (variant 2) and made without joints (variant 3). The fourth type of the core has the standard plane geometry formed by the intersected beams lying in the same plane (variant 4). Experimental tests were performed for the localized indentation loading according to the three-point bending scheme with small span-to-thickness ratio. From the experiments we found that the plane geometry of variant 4 has the highest rigidity and the highest load bearing capacity in the static tests. However, other three variants of the pantographic-type cores (1–3) demonstrate the better performance under the impact loading. The impact strength of such structures are in 3.5–5 times higher than those one of variant 4 with almost the same mass per unit length. This result is validated by using numerical simulations and explained by the decrease of the stress concentration and the stress state triaxiality and also by the delocalization effects that arise in the pantographic-type cores.


Author(s):  
Florian Kuisat ◽  
Fernando Lasagni ◽  
Andrés Fabián Lasagni

AbstractIt is well known that the surface topography of a part can affect its mechanical performance, which is typical in additive manufacturing. In this context, we report about the surface modification of additive manufactured components made of Titanium 64 (Ti64) and Scalmalloy®, using a pulsed laser, with the aim of reducing their surface roughness. In our experiments, a nanosecond-pulsed infrared laser source with variable pulse durations between 8 and 200 ns was applied. The impact of varying a large number of parameters on the surface quality of the smoothed areas was investigated. The results demonstrated a reduction of surface roughness Sa by more than 80% for Titanium 64 and by 65% for Scalmalloy® samples. This allows to extend the applicability of additive manufactured components beyond the current state of the art and break new ground for the application in various industrial applications such as in aerospace.


2021 ◽  
Vol 80 (3) ◽  
pp. 1963-1980
Author(s):  
Solomon Adomako ◽  
Christian John Engelsen ◽  
Rein Terje Thorstensen ◽  
Diego Maria Barbieri

AbstractRock aggregates constitute the enormous volume of inert construction material used around the globe. The petrologic description as igneous, sedimentary, and metamorphic types establishes the intrinsic formation pattern of the parent rock. The engineering properties of these rocks vary due to the differences in the transformation process (e.g. hydrothermal deposits) and weathering effect. The two most common mechanical tests used to investigate the performance of aggregates are the Los Angeles (LA) and micro-Deval (MD) tests. This study reviewed the geological parameters (including mineralogy, grain and crystal size, grain shape, and porosity) and the relationship to Los Angeles and micro-Deval tests. It was found that high content of primary minerals in rocks (e.g. quartz and feldspar) is a significant parameter for performance evaluation. Traces of secondary and accessory minerals also affect the performance of rocks, although in many cases it is based on the percentage. Furthermore, some studies showed that the effect of mineralogic composition on mechanical strength is not sufficient to draw final conclusions of mechanical performance; therefore, the impact of other textural characteristics should be considered. The disposition of grain size and crystal size (e.g. as result of lithification) showed that rocks composed of fine-grain textural composition of ≤ 1 mm enhanced fragmentation and wear resistance than medium and coarse grained (≥ 1 mm). The effect of grain shape was based on convex and concave shapes and flat and elongated apexes of tested samples. The equidimensional form descriptor of rocks somehow improved resistance to impact from LA than highly flat and elongated particles. Lastly, the distribution of pore space investigated by means of the saturation method mostly showed moderate (R = 0.50) to strong (R = 0.90) and positive correlations to LA and MD tests.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Harish Gupta ◽  
S. Kiran Kumar Reddy ◽  
Mounika Chiluka ◽  
Vamshikrishna Gandla

AbstractIn this study, we demonstrate the impact of the construction of a mega-dam on the nutrient export regime of a large tropical river into the Arabian Sea. Long-term (11 years) fortnight nutrient parameters, upstream and downstream to Sardar Sarovar (SS) Dam, were examined to determine the periodical change in nutrient fluxes from the Narmada River, India. During this 11-year period, the average discharge of the Narmada River upstream to Rajghat (35.3 km3 year−1) was higher than that of downstream at Garudeshwar (33.9 km3 year−1). However, during the same period, the suspended sediment load was reduced by 21 million tons (MT) from 37.9 MT at Rajghat to 16.7 MT at Garudeshwar. Similarly, mean concentrations of dissolved silica (DSi) reduced from 470 (upstream) to 214 µM (downstream), dissolved inorganic phosphate (DIP) from 0.84 to 0.38 µM, and dissolved inorganic nitrogen (DIN) from 43 to 1.5 µM. It means that about 54%, 55%, and 96% flux of DSi, DIP, and DIN retained behind the dam, respectively. The estimated denitrification rate (80,000 kg N km−2 year−1) for the reservoir is significantly higher than N removal by lentic systems, globally. We hypothesize that processes such as biological uptake and denitrification under anoxic conditions could be a key reason for the significant loss of nutrients, particularly of DIN. Finally, we anticipated that a decline in DIN fluxes (by 1.13 × 109 mol year−1) from the Narmada River to the Arabian Sea might reduce the atmospheric CO2 fixation by 7.46 × 109 mol year−1.


2021 ◽  
pp. 002199832199945
Author(s):  
Jong H Eun ◽  
Bo K Choi ◽  
Sun M Sung ◽  
Min S Kim ◽  
Joon S Lee

In this study, carbon/epoxy composites were manufactured by coating with a polyamide at different weight percentages (5 wt.%, 10 wt.%, 15 wt.%, and 20 wt.%) to improve their impact resistance and fracture toughness. The chemical reaction between the polyamide and epoxy resin were examined by fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray photoelectron spectroscopy. The mechanical properties and fracture toughness of the carbon/epoxy composites were analyzed. The mechanical properties of the carbon/epoxy composites, such as transverse flexural tests, longitudinal flexural tests, and impact tests, were investigated. After the impact tests, an ultrasonic C-scan was performed to reveal the internal damage area. The interlaminar fracture toughness of the carbon/epoxy composites was measured using a mode I test. The critical energy release rates were increased by 77% compared to the virgin carbon/epoxy composites. The surface morphology of the fractured surface was observed. The toughening mechanism of the carbon/epoxy composites was suggested based on the confirmed experimental data.


1969 ◽  
Vol 244 (9) ◽  
pp. 2317-2324
Author(s):  
R Scholz ◽  
R G Thurman ◽  
J R Williamson ◽  
B Chance ◽  
T Bücher

2020 ◽  
Vol 9 (1) ◽  
pp. 1137-1146
Author(s):  
Qingli Zheng ◽  
Pengfei Dong ◽  
Zhiqiang Li ◽  
Ying Lv ◽  
Meiwen An ◽  
...  

AbstractBraided composite stent (BCS), woven with nitinol wires and polyethylene terephthalate (PET) strips, provides a hybrid design of stent. The mechanical performance of this novel stent has not been fully investigated yet. In this work, the influence of five main design factors (number of nitinol wires, braiding angle, diameter of nitinol wire, thickness and stiffness of the PET strip) on the surface coverage, radial strength, and flexibility of the BCS were systematically studied using computational models. The orthogonal experimental design was adopted to quantitatively analyze the sensitivity of multiple factors using the minimal number of study cases. Results have shown that the nitinol wire diameter and the braiding angle are two most important factors determining the mechanical performance of the BCS. A larger nitinol wire diameter led to a larger radial strength and less flexibility of the BCS. A larger braiding angle could provide a larger radial strength and better flexibility. In addition, the impact of the braiding angle decreased when the stent underwent a large deformation. At the same time, the impact of the PET strips increased due to the interaction with nitinol wires. Moreover, the number of PET strips played an important role in the surface coverage. This study could help understand the mechanical performance of BCS stent and provides guidance on the optimal design of the stent targeting less complications.


2004 ◽  
Vol 286 (2) ◽  
pp. R390-R397 ◽  
Author(s):  
D. N. D'Souza ◽  
Y. Zhang ◽  
F. Garcia ◽  
G. Battaglia ◽  
L. D. Van de Kar

Tryptophan depleting protocols are commonly used to study the role of serotonin in mood disorders. The present study examined the impact of a tryptophan-deficient diet and fluoxetine on the serotonergic regulation of neuroendocrine function and body weight. We hypothesized that the regulation of postsynaptic 5-HT1A receptors is dependent on the levels of 5-HT in the synapse. Rats on a control or a tryptophan-deficient diet received daily injections of saline or fluoxetine (5 or 10 mg·kg-1·day-1 ip) from day 7 to day 21. The tryptophan-deficient diet produced a 41% reduction in the level of 5-HT but no change in the density of [3H]paroxetine-labeled 5-HT transporters. Treatment with fluoxetine inhibited the gain in weight in rats maintained on the control diet. The tryptophan-deficient diet produced a significant loss in body weight that was not significantly altered by treatment with fluoxetine. Treatment with fluoxetine produced a dose-dependent desensitization of hormone responses to injection of the 5-HT1A receptor agonist (±)8-hydroxy-2-(di- n-propylamino)tetralin ((±)8-OH-DPAT). The tryptophan-deficient diet produced an increase in the basal levels of corticosterone but did not alter the basal levels of ACTH or oxytocin. Also, this diet inhibited the magnitude of 8-OH-DPAT-induced increase in plasma levels of ACTH and oxytocin but did not impair the ability of fluoxetine to desensitize the 5-HT1A receptor-mediated increase in plasma hormones. These data suggest that a reserve of 5-HT enables fluoxetine to desensitize postsynaptic 5-HT1A receptors in the hypothalamus. In conclusion, the profound physiological changes induced by tryptophan depletion may complicate the interpretation of studies using this experimental approach.


Sign in / Sign up

Export Citation Format

Share Document