scholarly journals Mouse Homologue of the Schizophrenia Susceptibility GeneZNF804Aas a Target of Hoxc8

2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Hyun Joo Chung ◽  
Ji-Yeon Lee ◽  
Custer C. Deocaris ◽  
Hyehyun Min ◽  
Sang Hoon Kim ◽  
...  

Using a ChIP-cloning technique, we identified a Zinc finger protein 804a (Zfp804a) as one of the putative Hoxc8 downstream target genes. We confirmed binding of Hoxc8 to an intronic region ofZfp804aby ChIP-PCR in F9 cells as well as in mouse embryos. Hoxc8 upregulatedZfp804amRNA levels and augmented minimal promoter activity in vitro. In E11.5 mouse embryos,Zfp804aandHoxc8were coexpressed. Recent genome-wide studies identifiedZfp804a(orZNF804Ain humans) as a plausible marker for schizophrenia, leading us to hypothesize that this embryogenic regulatory control might also exert influence in development of complex traits such as psychosis.

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii414-iii414
Author(s):  
Muh-Lii Liang ◽  
Tsung-Han Hsieh ◽  
Tai-Tong Wong

Abstract BACKGROUND Glial-lineage tumors constitute a heterogeneous group of neoplasms, comprising gliomas, oligodendrogliomas, and ependymomas, which account for 40%–50% of all pediatric central nervous system tumors. Advances in modern neuro-oncological therapeutics are aimed at improving neoadjuvant chemotherapy and deferring radiotherapy because radiation exposure may cause long-term side effects on the developing brain in young children. Despite aggressive treatment, more than half the high-grade gliomas (pHGGs) and one-third of ependymomas exhibit recurrence within 2 years of initial treatment. METHODS By using integrated bioinformatics and through experimental validation, we found that at least one gene among CCND1, CDK4, and CDK6 was overexpressed in pHGGs and ependymomas. RESULTS The use of abemaciclib, a highly selective CDK4/6 inhibitor, effectively inhibited cell proliferation and reduced the expression of cell cycle–related and DNA repair–related gene expression, which was determined through RNA-seq analysis. The efficiency of abemaciclib was validated in vitro in pHGGs and ependymoma cells and in vivo by using subcutaneously implanted ependymoma cells from patient-derived xenograft (PDX) in mouse models. Abemaciclib demonstrated the suppression of RB phosphorylation, downstream target genes of E2F, G2M checkpoint, and DNA repair, resulting in tumor suppression. CONCLUSION Abemaciclib showed encouraging results in preclinical pediatric glial-lineage tumors models and represented a potential therapeutic strategy for treating challenging tumors in children.


2021 ◽  
Vol 22 (3) ◽  
pp. 1478
Author(s):  
Jiayin Lu ◽  
Yaoxing Chen ◽  
Zixu Wang ◽  
Jing Cao ◽  
Yulan Dong

Restraint stress causes various maternal diseases during pregnancy. β2-Adrenergic receptor (β2-AR) and Forkhead transcription factor class O 1 (FOXO1) are critical factors not only in stress, but also in reproduction. However, the role of FOXO1 in restraint stress, causing changes in the β2-AR pathway in pregnant mice, has been unclear. The aim of this research was to investigate the β2-AR pathway of restraint stress and its impact on the oxidative stress of the maternal uterus. In the study, maternal mice were treated with restraint stress by being restrained in a transparent and ventilated device before sacrifice on Pregnancy Day 5 (P5), Pregnancy Day 10 (P10), Pregnancy Day 15 (P15), and Pregnancy Day 20 (P20) as well as on Non-Pregnancy Day 5 (NP5). Restraint stress augmented blood corticosterone (CORT), norepinephrine (NE), and blood glucose levels, while oestradiol (E2) levels decreased. Moreover, restraint stress increased the mRNA levels of the FOXO family, β2-AR, and even the protein levels of FOXO1 and β2-AR in the uterus and ovaries. Furthermore, restraint stress increased uterine oxidative stress level. In vitro, the protein levels of FOXO1 were also obviously increased when β2-AR was activated in endometrial stromal cells (ESCs). In addition, phosphorylated-nuclear factor kappa-B p65 (p-NF-κB p65) and its target genes decreased significantly when FOXO1 was inhibited. Overall, it can be said that the β2-AR/FOXO1/p-NF-κB p65 pathway was activated when pregnant mice were under restraint stress. This study provides a scientific basis for the origin of psychological stress in pregnant women.


Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 2799-2812 ◽  
Author(s):  
A. McCormick ◽  
N. Core ◽  
S. Kerridge ◽  
M.P. Scott

Along the anterior-posterior axis of animal embryos, the choice of cell fates, and the organization of morphogenesis, is regulated by transcription factors encoded by clustered homeotic or ‘Hox’ genes. Hox genes function in both epidermis and internal tissues by regulating the transcription of target genes in a position- and tissue-specific manner. Hox proteins can have distinct targets in different tissues; the mechanisms underlying tissue and homeotic protein specificity are unknown. Light may be shed by studying the organization of target gene enhancers. In flies, one of the target genes is teashirt (tsh), which encodes a zinc finger protein. tsh itself is a homeotic gene that controls trunk versus head development. We identified a tsh gene enhancer that is differentially activated by Hox proteins in epidermis and mesoderm. Sites where Antennapedia (Antp) and Ultrabithorax (Ubx) proteins bind in vitro were mapped within evolutionarily conserved sequences. Although Antp and Ubx bind to identical sites in vitro, Antp activates the tsh enhancer only in epidermis while Ubx activates the tsh enhancer in both epidermis and in somatic mesoderm. We show that the DNA elements driving tissue-specific transcriptional activation by Antp and Ubx are separable. Next to the homeotic protein-binding sites are extensive conserved sequences likely to control tissue activation by different homeodomain proteins. We propose that local interactions between homeotic proteins and other factors effect activation of targets in proper cell types.


2021 ◽  
Author(s):  
Yanhui Hao ◽  
Wenchao Li ◽  
Hui Wang ◽  
Jing Zhang ◽  
Haoyu Wang ◽  
...  

Abstract Background With the development of science and technology, microwaves are being widely used. More and more attention has been paid to the potential health hazards of microwave exposure. The regulation of miR-30a-5p (miR-30a) on autophagy is involved in the pathophysiological process of many diseases. Our previous study found that 30 mW/cm2 microwave radiation could reduce miR-30a expression and activate neuronal autophagy in rat hippocampus. However, the roles played by miR-30a in microwave-induced neuronal autophagy and related mechanisms remain largely unexplored. Results In the present study, we established neuronal damage models by exposing rat hippocampal neurons and rat adrenal pheochromocytoma (PC12) cell-derived neuron-like cells to 30 mW/cm2 microwave, which resulted in miR-30a downregulation and autophagy activation in vivo and in vitro. Bioinformatics analysis was conducted, and Beclin1, Prkaa2, Irs1, Pik3r2, Rras2, Ddit4, Gabarapl2 and autophagy-related gene 12 (Atg12) were identified as potential downstream target genes of miR-30a involved in regulating autophagy. Based on our previous findings that microwave radiation can cause a neuronal energy metabolism disorder, Prkaa2, encoding adenosine 5’-monophosphate-activated protein kinase α2 (AMPKα2, an important catalytic subunit of energy sensor AMPK), was selected for further analysis. Dual-luciferase reporter assay results showed that Prkaa2 is a downstream target gene of miR-30a. Microwave radiation increased the expression and phosphorylation (Thr172) of AMPKα both in vivo and in vitro. Moreover, the transduction of cells with miR-30a mimics suppressed AMPKα2 expression, inhibited AMPKα (Thr172) phosphorylation and reduced autophagy flux in neuron-like cells. Importantly, miR-30a mimics abolished microwave-activated autophagy and inhibited microwave-induced AMPKα (Thr172) phosphorylation. Conclusions AMPKα2 was a newly founded downstream gene of miR-30a involved in autophagy regulation, and miR-30a downregulation after microwave radiation could promote neuronal autophagy by increasing AMPKα2 expression and activating AMPK signaling.


Development ◽  
2001 ◽  
Vol 128 (18) ◽  
pp. 3405-3413 ◽  
Author(s):  
Adi Inbal ◽  
Naomi Halachmi ◽  
Charna Dibner ◽  
Dale Frank ◽  
Adi Salzberg

Homothorax (HTH) is a homeobox-containing protein, which plays multiple roles in the development of the embryo and the adult fly. HTH binds to the homeotic cofactor Extradenticle (EXD) and translocates it to the nucleus. Its function within the nucleus is less clear. It was shown, mainly by in vitro studies, that HTH can bind DNA as a part of ternary HTH/EXD/HOX complexes, but little is known about the transcription regulating function of HTH-containing complexes in the context of the developing fly. Here we present genetic evidence, from in vivo studies, for the transcriptional-activating function of HTH. The HTH protein was forced to act as a transcriptional repressor by fusing it to the Engrailed (EN) repression domain, or as a transcriptional activator, by fusing it to the VP16 activation domain, without perturbing its ability to translocate EXD to the nucleus. Expression of the repressing form of HTH in otherwise wild-type imaginal discs phenocopied hth loss of function. Thus, the repressing form was working as an antimorph, suggesting that normally HTH is required to activate the transcription of downstream target genes. This conclusion was further supported by the observation that the activating form of HTH caused typical hth gain-of-function phenotypes and could rescue hth loss-of-function phenotypes. Similar results were obtained with XMeis3, the Xenopus homologue of HTH, extending the known functional similarity between the two proteins. Competition experiments demonstrated that the repressing forms of HTH or XMeis3 worked as true antimorphs competing with the transcriptional activity of the native form of HTH. We also describe the phenotypic consequences of HTH antimorph activity in derivatives of the wing, labial and genital discs. Some of the described phenotypes, for example, a proboscis-to-leg transformation, were not previously associated with alterations in HTH activity. Observing the ability of HTH antimorphs to interfere with different developmental pathways may direct us to new targets of HTH. The HTH antimorph described in this work presents a new means by which the transcriptional activity of the endogenous HTH protein can be blocked in an inducible fashion in any desired cells or tissues without interfering with nuclear localization of EXD.


2020 ◽  
Author(s):  
Weifeng Huang ◽  
Qin Tan ◽  
Yong Guo ◽  
Yongmei Cao ◽  
Jiawei Shang ◽  
...  

Abstract BackgroundAmong several leading cardiovascular disorders, ischemia-reperfusion (I/R) injury causes severe manifestations including acute heart failure, inflammation, and systemic dysfunction. Recently, there has been increasing evidence suggesting that alterations in mitochondrial morphology play a role in the prognoses of cardiac disorders. Long non-coding RNAs (lncRNAs) form major regulatory networks to modify gene transcription and translation. While several roles of lncRNAs have been explored in cancer and tumor biology, their implications on mitochondrial morphology and functions remain to be elucidated. MethodsThe functional roles of ZFP36L2 and lncRNA PVT1 were determined by a series of cardiomyocyte hypoxia/ reoxygenation (H/R) in vitro and myocardial I/R injury in vivo experiments. Quantitative Reverse transcription-polymerase chain reaction (qRT-PCR) and western blot analysis were used to detect the mRNA levels of ZFP36L2 and mitochondrial fission and fusion markers in the myocardial tissues and cardiomyocyte. Cardiac function was determined by immunohistochemistry, H&E, Masson’s staining and echocardiogram. Ultrastructural analysis of mitochondrial fission was performed using transmission electron microscopy (TEM). The mechanistic model of PVT1 with ZFP36L2 and miR-21-5p with MARCH5 was detected by subcellular fraction, RNA pull down, FISH, and luciferase reporter assays.ResultsIn this study, we report a novel regulatory axis involving lncRNA PVT1, microRNA miR-21-5p, and E3 ubiquitin ligase MARCH5, which alters mitochondrial morphology during myocardial I/R injury. Using an in vivo I/R injury mouse model and in vitro cardiomyocyte H/R model, we observed that zinc finger protein ZFP36L2 directly associated with PVT1 and altered mitochondrial fission and fusion. PVT1 also interacted with miR-21-5p and suppressed its expression and activity. Furthermore, we identified MARCH5 as a modifier of miR-21-5p, and expression of MARCH5 and its effect on mitochondrial fission and fusion were directly proportional to PVT1 expression during H/R injury. ConclusionsOur findings demonstrated that manipulation of PVT1-miR-21-5p-MARCH5-mediated mitochondrial fission and fusion via ZFP36L2 may be a novel therapeutic approach to regulate myocardial I/R injury.


2020 ◽  
Vol 40 (15) ◽  
Author(s):  
Dingyang Li ◽  
Zhe Tang ◽  
Zhiqiang Gao ◽  
Pengcheng Shen ◽  
Zhaochen Liu ◽  
...  

ABSTRACT It has been found that the circular RNA (circRNA) CDR1as is upregulated in cholangiocarcinoma (CCA) tissues. In this study, we tried to explore the roles of CDR1as in CCA. CDR1as was overexpressed or knocked down in human CCA cells to assess the effects of CDR1as on cell behaviors and tumor xenograft growth. In vitro, the CDR1as level was significantly increased in CCA cell lines. The results showed that CDR1as promoted the cell proliferation, migration, invasion, and activation of the AKT3/mTOR pathway in CCA cells. Moreover, miR-641, a predicted target microRNA (miRNA) of CDR1as, could partially reverse the effects of CDR1as on cell behaviors in CCA cells. Furthermore, CDR1as improved tumor xenograft growth, and it could be attenuated by miR-641 in vivo. Additionally, CDR1as expression was inversely correlated with miR-641 in CCA cells, and miR-641 could directly bind with CDR1as and its target genes, the AKT3 and mTOR genes. Mechanistically, CDR1as could bind with miR-641 and accelerate miR-641 degradation, which possibly leads to the upregulation of the relative mRNA levels of AKT3 and mTOR in RBE cells. In conclusion, our findings indicated that CDR1as might exert oncogenic properties, at least partially, by regulating miR-641 in CCA. CDR1as and miR-641 could be considered therapeutic targets for CCA.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 350
Author(s):  
Seong Mun Jeong ◽  
Yeon-Jeong Kim

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells which accumulate in stress conditions such as infection and tumor. Astaxanthin (ATX) is a well-known antioxidant agent and has a little toxicity. It has been reported that ATX treatment induces antitumor effects via regulation of cell signaling pathways, including nuclear factor erythroid-derived 2-related factor 2 (Nrf2) signaling. In the present study, we hypothesized that treatment with ATX might induce maturation of MDSCs and modulate their immunosuppressive activity. Both in vivo and in vitro treatment with ATX resulted in up-regulation of surface markers such as CD80, MHC class II, and CD11c on both polymorphonuclear (PMN)-MDSCs and mononuclear (Mo)-MDSCs. Expression levels of functional mediators involved in immune suppression were significantly reduced, whereas mRNA levels of Nrf2 target genes were increased in ATX-treated MDSCs. In addition, ATX was found to have antioxidant activity reducing reactive oxygen species level in MDSCs. Finally, ATX-treated MDSCs were immunogenic enough to induce cytotoxic T lymphocyte response and contributed to the inhibition of tumor growth. This demonstrates the role of ATX as a regulator of the immunosuppressive tumor environment through induction of differentiation and functional conversion of MDSCs.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yang Chen ◽  
Tao Sun ◽  
Junzhen Wu ◽  
Bill Kalionis ◽  
Changcheng Zhang ◽  
...  

The aim of the study was to investigate the effect of icariin (ICA) on cardiac aging through its effects on the SIRT6 enzyme and on the NF-κB pathway. Investigating the effect of ICA on the enzymatic activity of histone deacetylase SIRT6 revealed a concentration of 10−8 mol/L ICA had a maximum activating effect on histone deacetylase SIRT6 enzymatic activity. Western analysis showed that ICA upregulated SIRT6 protein expression and downregulated NF-κB (p65) protein expression in animal tissues and cell models. ICA upregulated the expression of SIRT6 and had an inhibitory effect on NF-κB inflammatory signaling pathways as shown by decreasing mRNA levels of the NF-κB downstream target genes TNF-α, ICAM-1, IL-2, and IL-6. Those effects were mediated directly or indirectly by SIRT6. We provided evidence that inflammaging may involve a novel link between the effects of ICA on SIRT6 (a regulator of aging) and NF-κB (a regulator of inflammation).


Sign in / Sign up

Export Citation Format

Share Document