scholarly journals Oncoimmunology Meets Organs-on-Chip

2021 ◽  
Vol 8 ◽  
Author(s):  
Fabrizio Mattei ◽  
Sara Andreone ◽  
Arianna Mencattini ◽  
Adele De Ninno ◽  
Luca Businaro ◽  
...  

Oncoimmunology represents a biomedical research discipline coined to study the roles of immune system in cancer progression with the aim of discovering novel strategies to arm it against the malignancy. Infiltration of immune cells within the tumor microenvironment is an early event that results in the establishment of a dynamic cross-talk. Here, immune cells sense antigenic cues to mount a specific anti-tumor response while cancer cells emanate inhibitory signals to dampen it. Animals models have led to giant steps in this research context, and several tools to investigate the effect of immune infiltration in the tumor microenvironment are currently available. However, the use of animals represents a challenge due to ethical issues and long duration of experiments. Organs-on-chip are innovative tools not only to study how cells derived from different organs interact with each other, but also to investigate on the crosstalk between immune cells and different types of cancer cells. In this review, we describe the state-of-the-art of microfluidics and the impact of OOC in the field of oncoimmunology underlining the importance of this system in the advancements on the complexity of tumor microenvironment.

2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Katrin Schlie ◽  
Jaeline E. Spowart ◽  
Luke R. K. Hughson ◽  
Katelin N. Townsend ◽  
Julian J. Lum

Hypoxia is a signature feature of growing tumors. This cellular state creates an inhospitable condition that impedes the growth and function of all cells within the immediate and surrounding tumor microenvironment. To adapt to hypoxia, cells activate autophagy and undergo a metabolic shift increasing the cellular dependency on anaerobic metabolism. Autophagy upregulation in cancer cells liberates nutrients, decreases the buildup of reactive oxygen species, and aids in the clearance of misfolded proteins. Together, these features impart a survival advantage for cancer cells in the tumor microenvironment. This observation has led to intense research efforts focused on developing autophagy-modulating drugs for cancer patient treatment. However, other cells that infiltrate the tumor environment such as immune cells also encounter hypoxia likely resulting in hypoxia-induced autophagy. In light of the fact that autophagy is crucial for immune cell proliferation as well as their effector functions such as antigen presentation and T cell-mediated killing of tumor cells, anticancer treatment strategies based on autophagy modulation will need to consider the impact of autophagy on the immune system.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Iris Lodewijk ◽  
Sandra P. Nunes ◽  
Rui Henrique ◽  
Carmen Jerónimo ◽  
Marta Dueñas ◽  
...  

Abstract Background Epigenetic alterations are known contributors to cancer development and aggressiveness. Additional to alterations in cancer cells, aberrant epigenetic marks are present in cells of the tumor microenvironment, including lymphocytes and tumor-associated macrophages, which are often overlooked but known to be a contributing factor to a favorable environment for tumor growth. Therefore, the main aim of this review is to give an overview of the epigenetic alterations affecting immune cells in the tumor microenvironment to provoke an immunosuppressive function and contribute to cancer development. Moreover, immunotherapy is briefly discussed in the context of epigenetics, describing both its combination with epigenetic drugs and the need for epigenetic biomarkers to predict response to immune checkpoint blockage. Main body Combining both topics, epigenetic machinery plays a central role in generating an immunosuppressive environment for cancer growth, which creates a barrier for immunotherapy to be successful. Furthermore, epigenetic-directed compounds may not only affect cancer cells but also immune cells in the tumor microenvironment, which could be beneficial for the clinical response to immunotherapy. Conclusion Thus, modulating epigenetics in combination with immunotherapy might be a promising therapeutic option to improve the success of this therapy. Further studies are necessary to (1) understand in depth the impact of the epigenetic machinery in the tumor microenvironment; (2) how the epigenetic machinery can be modulated according to tumor type to increase response to immunotherapy and (3) find reliable biomarkers for a better selection of patients eligible to immunotherapy.


Nanomedicine ◽  
2020 ◽  
Vol 15 (26) ◽  
pp. 2625-2641
Author(s):  
Juliete Nathali Scholl ◽  
Camila Kehl Dias ◽  
Laurent Muller ◽  
Ana Maria Oliveira Battastini ◽  
Fabrício Figueiró

Extracellular vesicles (EVs) are released especially by cancer cells. They modulate the tumor microenvironment by interacting with immune cells while carrying immunosuppressive or immunostimulatory molecules. In this review, we will explore some conflicting reports regarding the immunological outcomes of EVs in cancer progression, in which they might initiate an antitumor immune response or an immunosuppressive response. Concerning immunosuppression, the role of tumor-derived EVs’ in the adenosinergic system is underexplored. The enhancement of adenosine (ADO) levels in the tumor microenvironment impairs T-cell function and cytokine release. However, some tumor-derived EVs may deliver immunostimulatory factors, promoting immunogenic activity, even with ADO production. The modulatory role of ADO over the tumor progression represents a piece in an intricate microenvironment with anti and pro tumoral seesaw-like mechanisms.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 986
Author(s):  
Nada S. Aboelella ◽  
Caitlin Brandle ◽  
Timothy Kim ◽  
Zhi-Chun Ding ◽  
Gang Zhou

It has been well-established that cancer cells are under constant oxidative stress, as reflected by elevated basal level of reactive oxygen species (ROS), due to increased metabolism driven by aberrant cell growth. Cancer cells can adapt to maintain redox homeostasis through a variety of mechanisms. The prevalent perception about ROS is that they are one of the key drivers promoting tumor initiation, progression, metastasis, and drug resistance. Based on this notion, numerous antioxidants that aim to mitigate tumor oxidative stress have been tested for cancer prevention or treatment, although the effectiveness of this strategy has yet to be established. In recent years, it has been increasingly appreciated that ROS have a complex, multifaceted role in the tumor microenvironment (TME), and that tumor redox can be targeted to amplify oxidative stress inside the tumor to cause tumor destruction. Accumulating evidence indicates that cancer immunotherapies can alter tumor redox to intensify tumor oxidative stress, resulting in ROS-dependent tumor rejection. Herein we review the recent progresses regarding the impact of ROS on cancer cells and various immune cells in the TME, and discuss the emerging ROS-modulating strategies that can be used in combination with cancer immunotherapies to achieve enhanced antitumor effects.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Chao Wang ◽  
Daya Luo

AbstractMetastasis is a complex multistep cascade of cancer cell extravasation and invasion, in which metabolism plays an important role. Recently, a metabolic adaptation mechanism of cancer metastasis has been proposed as an emerging model of the interaction between cancer cells and the host microenvironment, revealing a deep and extensive relationship between cancer metabolism and cancer metastasis. However, research on how the host microenvironment affects cancer metabolism is mostly limited to the impact of the local tumour microenvironment at the primary site. There are few studies on how differences between the primary and secondary microenvironments promote metabolic changes during cancer progression or how secondary microenvironments affect cancer cell metastasis preference. Hence, we discuss how cancer cells adapt to and colonize in the metabolic microenvironments of different metastatic sites to establish a metastatic organotropism phenotype. The mechanism is expected to accelerate the research of cancer metabolism in the secondary microenvironment, and provides theoretical support for the generation of innovative therapeutic targets for clinical metastatic diseases.


2019 ◽  
Vol 20 (2) ◽  
pp. 377 ◽  
Author(s):  
Giulia Franzolin ◽  
Luca Tamagnone

The inflammatory and immune response elicited by the growth of cancer cells is a major element conditioning the tumor microenvironment, impinging on disease progression and patients’ prognosis. Semaphorin receptors are widely expressed in inflammatory cells, and their ligands are provided by tumor cells, featuring an intense signaling cross-talk at local and systemic levels. Moreover, diverse semaphorins control both cells of the innate and the antigen-specific immunity. Notably, semaphorin signals acting as inhibitors of anti-cancer immune response are often dysregulated in human tumors, and may represent potential therapeutic targets. In this mini-review, we provide a survey of the best known semaphorin regulators of inflammatory and immune cells, and discuss their functional impact in the tumor microenvironment.


2020 ◽  
Author(s):  
Guillaume Jacquemin ◽  
Annabelle Wurmser ◽  
Mathilde Huyghe ◽  
Wenjie Sun ◽  
Meghan Perkins ◽  
...  

AbstractTumours are complex ecosystems composed of different types of cells that communicate and influence each other. While the critical role of stromal cells in affecting tumour growth is well established, the impact of mutant cancer cells on healthy surrounding tissues remains poorly defined. Here, we uncovered a paracrine mechanism by which intestinal cancer cells reactivate foetal and regenerative Yap-associated transcriptional programs in neighbouring wildtype epithelial cells, rendering them adapted to thrive in the tumour context. We identified the glycoprotein Thrombospondin-1 (Thbs1) as the essential factor that mediates non-cell autonomous morphological and transcriptional responses. Importantly, Thbs1 is associated with bad prognosis in several human cancers. This study reveals the Thbs1-YAP axis as the mechanistic link mediating paracrine interactions between epithelial cells, promoting tumour formation and progression.


2021 ◽  
Vol 22 ◽  
Author(s):  
Diana Duarte ◽  
Nuno Vale

: Antimalarial drugs from different classes have demonstrated anticancer effects in different types of cancer cells, but their complete mode of action in cancer remains unknown. Recently, several studies reported the important role of palmitoyl-protein thioesterase 1 (PPT1), a lysosomal enzyme, as the molecular target of chloroquine and its derivates in cancer. It was also found that PPT1 is overexpressed in different types of cancer, such as breast, colon, etc. Our group has found a synergistic interaction between antimalarial drugs, such as mefloquine, artesunate and chloroquine and antineoplastic drugs in breast cancer cells, but the mechanism of action was not determined. Here, we describe the importance of autophagy and lysosomal inhibitors in tumorigenesis and hypothesize that other antimalarial agents besides chloroquine could also interact with PPT1 and inhibit the mechanistic target of rapamycin (mTOR) signalling, an important pathway in cancer progression. We believe that PPT1 inhibition results in changes in the lysosomal metabolism that result in less accumulation of antineoplastic drugs in lysosomes, which increases the bioavailability of the antineoplastic agents. Taken together, these mechanisms help to explain the synergism of antimalarial and antineoplastic agents in cancer cells.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1293 ◽  
Author(s):  
Ghmkin Hassan ◽  
Masaharu Seno

The concepts of hematopoiesis and the generation of blood and immune cells from hematopoietic stem cells are some steady concepts in the field of hematology. However, the knowledge of hematopoietic cells arising from solid tumor cancer stem cells is novel. In the solid tumor microenvironment, hematopoietic cells play pivotal roles in tumor growth and progression. Recent studies have reported that solid tumor cancer cells or cancer stem cells could differentiate into hematopoietic cells. Here, we discuss efforts and research that focused on the presence of hematopoietic cells in tumor microenvironments. We also discuss hematopoiesis from solid tumor cancer stem cells and clarify the notion of differentiation of solid tumor cancer stem cells into non-cancer hematopoietic stem cells.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1756
Author(s):  
Jessica Guerra ◽  
Paola Chiodelli ◽  
Chiara Tobia ◽  
Claudia Gerri ◽  
Marco Presta

Primary cilium drives the left-right asymmetry process during embryonic development. Moreover, its dysregulation contributes to cancer progression by affecting various signaling pathways. The fibroblast growth factor (FGF)/FGF receptor (FGFR) system modulates primary cilium length and plays a pivotal role in embryogenesis and tumor growth. Here, we investigated the impact of the natural FGF trap long-pentraxin 3 (PTX3) on the determination of primary cilium extension in zebrafish embryo and cancer cells. The results demonstrate that down modulation of the PTX3 orthologue ptx3b causes the shortening of primary cilium in zebrafish embryo in a FGF-dependent manner, leading to defects in the left-right asymmetry determination. Conversely, PTX3 upregulation causes the elongation of primary cilium in FGF-dependent cancer cells. Previous observations have identified the PTX3-derived small molecule NSC12 as an orally available FGF trap with anticancer effects on FGF-dependent tumors. In keeping with the non-redundant role of the FGF/FGR system in primary cilium length determination, NSC12 induces the elongation of primary cilium in FGF-dependent tumor cells, thus acting as a ciliogenic anticancer molecule in vitro and in vivo. Together, these findings demonstrate the ability of the natural FGF trap PTX3 to exert a modulatory effect on primary cilium in embryonic development and cancer. Moreover, they set the basis for the design of novel ciliogenic drugs with potential implications for the therapy of FGF-dependent tumors.


Sign in / Sign up

Export Citation Format

Share Document