scholarly journals Tracking Lung Tumors in Orthogonal X-Rays

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Feng Li ◽  
Fatih Porikli

This paper presents a computationally very efficient, robust, automatic tracking method that does not require any implanted fiducials for low-contrast tumors. First, it generates a set of motion hypotheses and computes corresponding feature vectors in local windows within orthogonal-axis X-ray images. Then, it fits a regression model that maps features to 3D tumor motions by minimizing geodesic distances on motion manifold. These hypotheses can be jointly generated in 3D to learn a single 3D regression model or in 2D through back projection to learn two 2D models separately. Tumor is tracked by applying regression to the consecutive image pairs while selecting optimal window size at every time. Evaluations are performed on orthogonal X-ray videos of 10 patients. Comparative experimental results demonstrate superior accuracy (~1 pixel average error) and robustness to varying imaging artifacts and noise at the same time.

2013 ◽  
Vol 284-287 ◽  
pp. 1589-1595
Author(s):  
Jing Jing Fang ◽  
Jia Kuang Liu ◽  
Chia Wei Chang ◽  
Yu Cheng Lin

Traditional cephalograms are X-ray films, which provide either frontal or lateral overlapped perspective medical imaging. Although computed tomography imaging provides more information in 3-dimensional anatomy, the landmarks for cephalometry are located in space which does not carry normal standards in 3-D cephalometry. The CT natural imaging method is different from X-ray in that they respectively use orthogonal and perspective projections. Thus, we cannot apply the statistical normal values gathered from traditional 2D cephometry to 3D cephalometry. This study makes use of calibrated synthesized cephalograms from computed tomography to construct a cephalometry bridge between 2-D and 3-D. In this thesis, we first review the imaging model of a specific X-ray machine (Asahi OrthoStage AUTO IIIN) by a camera calibration method. We then construct a reference system for a virtual head, and synthesize calibrated X-ray cephalograms using the volume rendering algorithm. System accuracy for the synthesis X-ray cephalograms is verified through an interactive corresponding landmark system between 2-D and 3-D. An experimental clinician was invited to manually place 17 landmarks on the X-rays and their corresponding, shuffled in random order. The systematic error, average error, and standard deviation of landmark positions are 0.15 mm, 0.97 mm, and 0.45 mm, respectively. The interactive system bridges the transformation from orthogonal 3-D to perspective 2-D cephalometry.


2020 ◽  
Vol 39 (3) ◽  
pp. 2893-2907 ◽  
Author(s):  
Huaiguang Wu ◽  
Pengjie Xie ◽  
Huiyi Zhang ◽  
Daiyi Li ◽  
Ming Cheng

The chest X-ray examination is one of the most important methods for screening and diagnosing of many lung diseases. Diagnosis of pneumonia by chest X-ray is one of the common methods used by medical experts. However, the image quality of chest X-Ray has some defects, such as low contrast, overlapping organs and blurred boundary, which seriously affects detecting pneumonia in chest X-rays. Therefore, it has important medical value and application significance to construct a stable and accurate automatic detection model of pneumonia through a large number of chest X-ray images. In this paper, we propose a novel hybrid system for detecting pneumonia from chest X-Ray image: ACNN-RF, which is an adaptive median filter Convolutional Neural Network (CNN) recognition model based on Random forest (RF). Firstly, the improved adaptive median filtering is employed to remove noise in the chest X-ray image, which makes the image more easily recognized. Secondly, we establish the CNN architecture based on Dropout to extract deep activation features from each chest X-ray image. Finally, we employ the RF classifier based on GridSearchCV class as a classifier for deep activation features in CNN model. It not only avoids the phenomenon of over-fitting in data training, but also improves the accuracy of image classification. During our experiment, the public chest X-ray image dataset used in the experiment contains 5863 images, which comprises 4265 frontal-view X-ray images of 1574 unique patients. The average recognition rate of pneumonia is up to 97% by the proposed ACNN-RF. The experimental results show that the ACNN-RF identification system is more effective than the previous traditional image identification system.


Author(s):  
Sterling Newberry ◽  
J. A. Vozzo ◽  
Michael Marko

The plant embryo is relatively insensitive to x-rays. One should like to take advantage of this property to follow the early processes of seed germination by time-lapse x-ray microscopy. Preliminary work has shown that radiation exposure can be reduced by two orders of magnitude if a minimum number of frames are exposed and the movie then generated by slowly dissolving one frame into the next. Image processing also helps the problem of low contrast in the living image. Present work has been directed against the problem that geotropism makes the embryo grow out of the plane of the picture (the instrument does not operate horizontally). The approach taken should also simplify the problems of maintaining a suitable environment for the seed and make the instrument available between exposures when working with seeds which have long germination times. The garden pea was chosen as a test material because of its environmental tolerance, short maturation cycle, and similarity to pine seeds in size and radiation tolerance.


2011 ◽  
Vol 18 (6) ◽  
pp. 823-834 ◽  
Author(s):  
Xinhui Lu ◽  
S. G. J. Mochrie ◽  
S. Narayanan ◽  
A. R. Sandy ◽  
M. Sprung

The newly introduced coherence-based technique of X-ray near-field speckle (XNFS) has been implemented at 8-ID-I at the Advanced Photon Source. In the near-field regime of high-brilliance synchrotron X-rays scattered from a sample of interest, it turns out that, when the scattered radiation and the main beam both impinge upon an X-ray area detector, the measured intensity shows low-contrast speckles, resulting from interference between the incident and scattered beams. A micrometer-resolution XNFS detector with a high numerical aperture microscope objective has been built and its capability for studying static structures and dynamics at longer length scales than traditional far-field X-ray scattering techniques is demonstrated. Specifically, the dynamics of dilute silica and polystyrene colloidal samples are characterized. This study reveals certain limitations of the XNFS technique, especially in the characterization of static structures, which is discussed.


2019 ◽  
Vol 43 (3) ◽  
pp. 455-463
Author(s):  
А.A. Mikhaylichenko ◽  
Y.М. Demyanenko

Detection of objects of interest is a crucial step in the automatic analysis of the medical X-ray images. However, medical X-rays are often characterized by the low contrast as well as great variability in range of colours, which makes it more difficult to be analysed by the common methods based on the regions homogeneity principles. In our paper, we present an alternative approach to the contours detection problem that does not require the homogeneity criteria to be satisfied. Our method is based on the identification of edge fragments and elimination of discontinuities between them. Moreover, we describe a numeric criterion for quality evaluation of contours detection. The obtained results can used for diagnosis of abnormalities and diseases, and also as an intermediate step for more sophisticated methods of image analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
José Carlos De La Vega ◽  
Pedro Luis Esquinas ◽  
Jovan Kaur Gill ◽  
Selin Jessa ◽  
Bradford Gill ◽  
...  

Purpose. The majority of X-ray contrast agents (XCA) are made with iodine, but iodine-based XCA (I-XCA) exhibit low contrast in high kVp X-rays due to iodine’s low atomic number (Z = 53) and K-edge (33.1 keV). While rhenium is a transition metal with a high atomic number (Z = 75) and K-edge (71.7 keV), the utilization of rhenium-based XCA (Re-XCA) in X-ray imaging techniques has not been studied in depth. Our study had two objectives: (1) to compare both the image quality and the absorbed dose of I- and Re-XCA and (2) to prepare and image a rhenium-doped scaffold. Procedures. I- and Re-XCA were prepared and imaged from 50 to 120 kVp by Micro-computed tomography (µCT) and digital radiography and from 120 to 220 kVp by planar X-ray imaging. The scans were repeated using 0.1 to 1.6 mm thick copper filters to harden the X-ray beam. A rhenium-doped scaffold was prepared via electrospinning, used to coat catheters, and imaged at 90 kVp by µCT. Results. I-XCA have a greater contrast-to-noise ratio (CNR) at 50 and 80 kVp, but Re-XCA have a greater CNR at >120 kVp. The difference in CNR is increased as the thickness of the copper filters is increased. For instance, the percent CNR improvement of rhenium over iodine is 14.2% with a 0.6 mm thick copper filter, but it is 59.1% with a 1.6 mm thick copper filter, as shown at 120 kVp by µCT. Upon coating them with a rhenium-doped scaffold, the catheters became radiopaque. Conclusions. Using Monte Carlo simulations, we showed that it is possible to reduce the absorbed dose of high kVp X-rays while allowing the acquisition of high-quality images. Furthermore, radiopaque catheters have the potential of enhancing the contrast during catheterizations and helping physicians to place catheters inside patients more rapidly and precisely.


1994 ◽  
Vol 144 ◽  
pp. 82
Author(s):  
E. Hildner

AbstractOver the last twenty years, orbiting coronagraphs have vastly increased the amount of observational material for the whitelight corona. Spanning almost two solar cycles, and augmented by ground-based K-coronameter, emission-line, and eclipse observations, these data allow us to assess,inter alia: the typical and atypical behavior of the corona; how the corona evolves on time scales from minutes to a decade; and (in some respects) the relation between photospheric, coronal, and interplanetary features. This talk will review recent results on these three topics. A remark or two will attempt to relate the whitelight corona between 1.5 and 6 R⊙to the corona seen at lower altitudes in soft X-rays (e.g., with Yohkoh). The whitelight emission depends only on integrated electron density independent of temperature, whereas the soft X-ray emission depends upon the integral of electron density squared times a temperature function. The properties of coronal mass ejections (CMEs) will be reviewed briefly and their relationships to other solar and interplanetary phenomena will be noted.


Author(s):  
R. H. Duff

A material irradiated with electrons emits x-rays having energies characteristic of the elements present. Chemical combination between elements results in a small shift of the peak energies of these characteristic x-rays because chemical bonds between different elements have different energies. The energy differences of the characteristic x-rays resulting from valence electron transitions can be used to identify the chemical species present and to obtain information about the chemical bond itself. Although these peak-energy shifts have been well known for a number of years, their use for chemical-species identification in small volumes of material was not realized until the development of the electron microprobe.


Author(s):  
E. A. Kenik ◽  
J. Bentley

Cliff and Lorimer (1) have proposed a simple approach to thin foil x-ray analy sis based on the ratio of x-ray peak intensities. However, there are several experimental pitfalls which must be recognized in obtaining the desired x-ray intensities. Undesirable x-ray induced fluorescence of the specimen can result from various mechanisms and leads to x-ray intensities not characteristic of electron excitation and further results in incorrect intensity ratios.In measuring the x-ray intensity ratio for NiAl as a function of foil thickness, Zaluzec and Fraser (2) found the ratio was not constant for thicknesses where absorption could be neglected. They demonstrated that this effect originated from x-ray induced fluorescence by blocking the beam with lead foil. The primary x-rays arise in the illumination system and result in varying intensity ratios and a finite x-ray spectrum even when the specimen is not intercepting the electron beam, an ‘in-hole’ spectrum. We have developed a second technique for detecting x-ray induced fluorescence based on the magnitude of the ‘in-hole’ spectrum with different filament emission currents and condenser apertures.


Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


Sign in / Sign up

Export Citation Format

Share Document