scholarly journals Thermodynamic Study of Adsorption of Phenol, 4-Chlorophenol, and 4-Nitrophenol on Activated Carbon Obtained from Eucalyptus Seed

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Nelson Giovanny Rincón-Silva ◽  
Juan Carlos Moreno-Piraján ◽  
Liliana Giraldo Giraldo

Activated carbons from shell eucalyptus (Eucalyptus globulus) were prepared by chemical activation through impregnation with solutions of two activators: sulfuric acid and sodium hydroxide, the surface areas for activated carbons with base were 780 and 670 m2 g−1and the solids activated with acid were 150 and 80 m2 g−1. These were applying in adsorption of priority pollutants: phenol, 4-nitrophenol, and 4-chlorophenol from aqueous solution. Activated carbon with the highest adsorption capacity has values of 2.12, 2.57, and 3.89 on phenol, 4-nitrophenol, and 4-chlorophenol, respectively, and was activated with base. In general, all carbons adsorption capacity was given in the following order: 4-chlorophenol > 4-nitrophenol > phenol. Adsorption isotherms of phenols on activated carbons were fitted to the Langmuir, Freundlich, and Dubinin-Radusckevisch-Kanager models, finding great association between them and experimental data. A thermodynamic study was performed, the exothermic nature and spontaneous nature of the adsorption process were confirmed, and the favorability of adsorption on activated carbons with NaOH was confirmed by energy relations and concluded that the adsorption process of phenolic compounds from the activated carbon obtained is physical. The pH of solutions and pH at point of zero charge of the solid play an important role in the adsorption process.

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2237
Author(s):  
Sara Stelitano ◽  
Giuseppe Conte ◽  
Alfonso Policicchio ◽  
Alfredo Aloise ◽  
Giovanni Desiderio ◽  
...  

Pinecones, a common biomass waste, has an interesting composition in terms of cellulose and lignine content that makes them excellent precursors in various activated carbon production processes. The synthesized, nanostructured, activated carbon materials show textural properties, a high specific surface area, and a large volume of micropores, which are all features that make them suitable for various applications ranging from the purification of water to energy storage. Amongst them, a very interesting application is hydrogen storage. For this purpose, activated carbon from pinecones were prepared using chemical activation with different KOH/precursor ratios, and their hydrogen adsorption capacity was evaluated at liquid nitrogen temperatures (77 K) at pressures of up to 80 bar using a Sievert’s type volumetric apparatus. Regarding the comprehensive characterization of the samples’ textural properties, the measurement of the surface area was carried out using the Brunauer–Emmett–Teller method, the chemical composition was investigated using wavelength-dispersive spectrometry, and the topography and long-range order was estimated using scanning electron microscopy and X-ray diffraction, respectively. The hydrogen adsorption properties of the activated carbon samples were measured and then fitted using the Langmuir/ Töth isotherm model to estimate the adsorption capacity at higher pressures. The results showed that chemical activation induced the formation of an optimal pore size distribution for hydrogen adsorption centered at about 0.5 nm and the proportion of micropore volume was higher than 50%, which resulted in an adsorption capacity of 5.5 wt% at 77 K and 80 bar; this was an increase of as much as 150% relative to the one predicted by the Chahine rule.


2008 ◽  
Vol 368-372 ◽  
pp. 1541-1544 ◽  
Author(s):  
Hua Lei Zhou ◽  
Dong Yan Li ◽  
Guo Zhuo Gong ◽  
Ya Jun Tian ◽  
Yun Fa Chen

Activated carbon was employed as the adsorption carrier for the metal ions in HCl solution of red mud, a solid waste produced in alumina industry. To improve the adsorption capacity to valuable metal ions, the activated carbon was modified by chemicals including HNO3, H2O2, H2SO4, H3PO4, NH3, Na2CO3, and tri-butyl phosphate (TBP). It was found that the modifications contributed the high adsorption capacity to almost all metal ions we focused on. In the case of TBP, remarkably higher adsorption capacity and selectivity of Sc3+ was observed. The correlation between the surface areas, IR spectra of those chemically modified activated carbons and adsorption was schemed.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Geni Juma ◽  
Revocatus Machunda ◽  
Tatiana Pogrebnaya

In this study, sweet potato leaf activated carbon (SpLAC) was prepared by the chemical activation method using KOH and applied as an adsorbent for H2S removal from biogas. The study focused on the understanding of the effect of carbonization temperature (Tc), varying KOH : C activation ratio, flow rate (FR) of biogas, and mass of SpLAC on sample adsorption capacity. The BET analysis was performed for both fresh and spent activated carbons as well as for carbonized samples, which were not activated; also, the activated carbon was characterized by XRF and CHNS techniques. The results showed that removal efficiency (RE) of the SpLAC increased with increase carbonization temperature from 600 to 800°C and the mass of sorbent from 0.4 g to 1.0 g. The optimal test conditions were determined: 1.0 g of sorbent with a KOH : C ratio of 1 : 1, Tc=800°C, and FR=0.02 m3/h which resulted in a sorption capacity of about 3.7 g S/100 g of the SpLAC. Our findings corroborated that H2S removal was contributed not only by the adsorption process with the pore available but also by the presence of iron in the sample that reacted with H2S. Therefore, upon successful H2S sorption, SpLAC is suggested as a viable adsorbent for H2S removal from biogas.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Nurgul Ozbay ◽  
Adife Seyda Yargic

Activated carbons were prepared by carbonization of tomato paste processing industry waste at 500°C followed by chemical activation with KOH, K2CO3, and HCl in N2 atmosphere at low temperature (500°C). The effects of different activating agents and impregnation ratios (25, 50, and 100 wt.%) on the materials’ characteristics were examined. Precursor, carbonized tomato waste (CTW), and activated carbons were characterized by using ultimate and proximate analysis, thermogravimetric analysis (TG/DTG), Fourier transform-infrared (FT-IR) spectroscopy, X-ray fluorescence (XRF) spectroscopy, point of zero charge measurements (pHPZC), particle size analyzer, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, nitrogen adsorption/desorption isotherms, and X-ray diffraction (XRD) analysis. Activation process improved pore formation and changed activated carbons’ surface characteristics. Activated carbon with the highest surface area (283 m3/g) was prepared by using 50 wt.% KOH as an activator. According to the experimental results, tomato paste waste could be used as an alternative precursor to produce low-cost activated carbon.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3136 ◽  
Author(s):  
Deneb Peredo-Mancilla ◽  
Imen Ghouma ◽  
Cecile Hort ◽  
Camelia Matei Ghimbeu ◽  
Mejdi Jeguirim ◽  
...  

The aim of the present work is to study the effect of different activation methods for the production of a biomass-based activated carbon on the CO 2 and CH 4 adsorption. The influence of the activation method on the adsorption uptake was studied using three activated carbons obtained by different activation methods (H 3 PO 4 chemical activation and H 2 O and CO 2 physical activation) of olive stones. Methane and carbon dioxide pure gas adsorption experiments were carried out at two working temperatures (303.15 and 323.15 K). The influence of the activation method on the adsorption uptake was studied in terms of both textural properties and surface chemistry. For the three adsorbents, the CO 2 adsorption was more important than that of CH 4 . The chemically-activated carbon presented a higher specific surface area and micropore volume, which led to a higher adsorption capacity of both CO 2 and CH 4 . For methane adsorption, the presence of mesopores facilitated the diffusion of the gas molecules into the micropores. In the case of carbon dioxide adsorption, the presence of more oxygen groups on the water vapor-activated carbon enhanced its adsorption capacity.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7045
Author(s):  
Justyna Kazmierczak-Razna ◽  
Anetta Zioła-Frankowska ◽  
Piotr Nowicki ◽  
Marcin Frankowski ◽  
Robert Wolski ◽  
...  

This paper deals with the adsorption of heavy metal ions (Cu2+ and Zn2+) on the carbonaceous materials obtained by chemical activation and ammoxidation of Polish brown coal. The effects of phase contact time, initial metal ion concentration, solution pH, and temperature, as well as the presence of competitive ions in solution, on the adsorption capacity of activated carbons were examined. It has been shown that the sample modified by introduction of nitrogen functional groups into carbon structure exhibits a greater ability to uptake heavy metals than unmodified activated carbon. It has also been found that the adsorption capacity increases with the increasing initial concentration of the solution and the phase contact time. The maximum adsorption was found at pH = 8.0 for Cu(II) and pH = 6.0 for Zn(II). For all samples, better fit to the experimental data was obtained with a Langmuir isotherm than a Freundlich one. A better fit of the kinetic data was achieved using the pseudo-second order model.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Brice Armel Ajouafeu Alongamo ◽  
Lydie Dodo Ajifack ◽  
Julius Numbonui Ghogomu ◽  
Ndi Julius Nsami ◽  
Joseph Mbadcam Ketcha

Activated carbons were obtained from the peelings of cassava tubers (Manihot esculenta) by chemical activation using potassium hydroxide and phosphoric acid at impregnation ratios of 2 : 1 and 1 : 1, respectively, at 400°C for batch adsorption of nickel(II) ions from aqueous solution. Characterization of activated carbon samples was achieved via proximate analysis, Fourier-transform infrared spectroscopy, pH of zero-point charge, Boehm method, elemental analysis, scanning electron microscopy, and iodine number determination for each adsorbent. The effects of pH, contact time, initial adsorbate concentration, and adsorbent dose were studied at 27°C in order to optimize the conditions for maximum adsorption. Equilibrium was attained after 40 minutes of contact of both materials with activating solutions. Maximum adsorption capacities of 41.15 mg/g for ACPH, 47.39 mg/g for ACPA, 35.34 mg/g for NIC, and 34.48 mg/g for RM, respectively, were obtained at pH = 4. Equilibrium data showed that the Langmuir model best described the adsorption process with R2 closed to unity, indicative of monolayer adsorption on a homogeneous surface. Kinetic studies showed that the adsorption process is controlled by the pseudo-second-order model. These results show that activated carbon prepared from cassava peelings constitutes an effective low-cost material for the treatment of wastewater containing nickel(II) ions.


2018 ◽  
Vol 13 (1) ◽  
pp. 153-159
Author(s):  
Sahira Joshi

 This paper presents the comparative study on the adsorption capacity of activated carbons prepared from Lapsi (Choerospondias axillaris) seed stone and Betel (Areca catechu) nut. Activated carbons (ACs) were prepared from Lapsi seed stone (LSS) and Betel Nut (BN) by chemical activation with H3PO4 (in the ratio of 1:1 by weight) at 400°C. The pore structure of activated carbons was determined by iodine number and methylene blue number. Surface morphology of ACs was studied by scanning electron microscopy (SEM). Surface functional groups were analyzed by Fourier Transform Infra Red Spectroscopy (FTIR). As indicated by TGA analysis, the appropriate temperature required for carbonization was 400 ºC. Betel nut AC showed high iodine number and methylene number of 888 mg/gm and 369 mg/gm respectively. SEM micrographs of Betel nut AC show the presence of well developed pores on its surface. FTIR result indicated that both ACs contain −OH, >C=O groups as oxygen containing surface functional groups. Based on the result, the AC prepared from betel nut by activation with H3PO4 is comparable with commercial activated carbon and could be used as potential adsorbent for removal of pollutants from water and waste water.Journal of the Institute of Engineering, 2017, 13(1): 153-159


2019 ◽  
Vol 8 (3) ◽  
pp. 168-178 ◽  
Author(s):  
Mohammed Kachabi ◽  
Imane El Mrabet ◽  
Zineb Benchekroun ◽  
Mostafa Nawdali ◽  
Zaitan Hicham

This study aimed to investigate the applicability of new low-cost activated carbons with a high surface area prepared by KOH chemical activation of jujube shells (denoted JSAC) as adsorbent of Chemical Organic Demand (COD) from wastewater.The prepared activated carbon is characterized by various physical-chemical methods to determine their morphological, textural and chemical characterization, including nitrogen adsorption-desorption isotherms, Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Boehm titration method and the pH of the point of zero charge (pHPZC).Then they were used as an adsorbent for the removal of COD from wastewater collected from Fez area. Adsorption equilibrium and kinetic data were determined and fitted to several adsorption isotherms and kinetics models, respectively. The results showed that the Langmuir isotherm fitted well the equilibrium data of COD on JSAC adsorbent; whereas, the kinetic data were best fitted by the pseudo-second-order model. This adsorbent showed the highest removal efficiency for COD (72%) and the grey colour of the wastewater (83%) for an optimum dose of 0.5 gJSAC. L-1. Results from the study showed that JSAC activated carbon could be utilized as an effective and less expensive adsorbent for the removal of COD in wastewater.


2020 ◽  
Vol 5 (3) ◽  
pp. 221
Author(s):  
Muhammad Azam ◽  
Muhammad Anas ◽  
Erniwati Erniwati

This study aims to determine the effect of variation of activation temperature of activated carbon from sugar palm bunches of chemically activatied with the activation agent of potassium silicate (K2SiO3) on the adsorption capacity of iodine and methylene blue. Activated carbon from bunches of sugar palmacquired in four steps: preparationsteps, carbonizationstepsusing the pyrolysis reactor with temperature of 300 oC - 400 oC for 8 hours and chemical activation using of potassium silicate (K2SiO3) activator in weight ratio of 2: 1 and physical activation using the electric furnace for 30 minutes with temperature variation of600 oC, 650 oC, 700 oC, 750 oC and 800 oC. The iodine and methyleneblue adsorption testedby Titrimetric method and Spectrophotometry methodrespectively. The results of the adsorption of iodine and methylene blue activated carbon from sugar palm bunches increased from 240.55 mg/g and 63.14 mg/g at a temperature of 600 oC to achieve the highest adsorption capacity of 325.80 mg/g and 73.59 mg/g at temperature of 700 oC and decreased by 257.54 mg/g and 52.03 mg/g at a temperature of 800 oCrespectively.However, it does not meet to Indonesia standard (Standard Nasional Indonesia/SNI), which is 750 mg/g and 120 mg/g respectively.


Sign in / Sign up

Export Citation Format

Share Document