scholarly journals A Review on Pharmacological Properties of Zingerone (4-(4-Hydroxy-3-methoxyphenyl)-2-butanone)

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Bilal Ahmad ◽  
Muneeb U. Rehman ◽  
Insha Amin ◽  
Ahmad Arif ◽  
Saiema Rasool ◽  
...  

Humans have been using natural products for medicinal use for ages. Natural products of therapeutic importance are compounds derived from plants, animals, or any microorganism. Ginger is also one of the most commonly used condiments and a natural drug in vogue. It is a traditional medicine, having some active ingredients used for the treatment of numerous diseases. During recent research on ginger, various ingredients like zingerone, shogaol, and paradol have been obtained from it. Zingerone (4-(4-hydroxy-3-methoxyphenyl)-2-butanone) is a nontoxic and inexpensive compound with varied pharmacological activities. It is the least pungent component ofZingiber officinale. Zingerone is absent in fresh ginger but cooking or heating transforms gingerol to zingerone. Zingerone closely related to vanillin from vanilla and eugenol from clove. Zingerone has potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic, and so forth properties. Besides, it displays the property of enhancing growth and immune stimulation. It behaves as appetite stimulant, anxiolytic, antithrombotic, radiation protective, and antimicrobial. Also, it inhibits the reactive nitrogen species which are important in causing Alzheimer’s disease and many other disorders. This review is written to shed light on the various pharmacological properties of zingerone and its role in alleviating numerous human and animal diseases.

Author(s):  
Angitha Ajay ◽  
Rupesh Kumar M ◽  
Shamal Badhusha PA ◽  
Abhishek K ◽  
Sanjay K Gowda ◽  
...  

Chromolaena odorata (Asteraceae) is commonly referred to as Siam Weed, a major medicinal plant found in tropical Asia, Australia, and West Africa. The medicinal use of Chromolaena odorata had been documented in the conventional system such as the Siddha, Unani, Ayurveda. The pharmacological properties of this plant are widely varying. A wide variety of attractive but limited compounds were extracted from this Chromolaena odorata and the pharmacological  activities   were   screened   out.   This   review   the   various   properties  of Chromolaena odorata and focus on its various medicinal properties. It is an attractive subject for further experimental and clinical investigations. This article will give an exhaustive summary and analysis of Chromolaena odorata pharmacological activities. The present article including the detailed exploration of pharmacological properties of C. odorata is an attempt to provide a direction for further research.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 595 ◽  
Author(s):  
Benyin Zhang ◽  
Xiaona Jin ◽  
Hengxia Yin ◽  
Dejun Zhang ◽  
Huakun Zhou ◽  
...  

Medicinal plants have been known as a rich source of natural products (NPs). Due to their diverse chemical structures and remarkable pharmacological activities, NPs are regarded as important repertoires for drug discovery and development. Biebersteinia plant species belong to the Biebersteiniaceae family, and have been used in folk medicines in China and Iran for ages. However, the chemical properties, bioactivities and modes of action of the NPs produced by medicinal Biebersteinia species are poorly understood despite the fact that there are only four known Biebersteinia species worldwide. Here, we reviewed the chemical classifications and diversity of the various NPs found in the four known Biebersteinia species. We found that the major chemical categories in these plants include flavonoids, alkaloids, phenylpropanoids, terpenoids, essential oils and fatty acids. We also discussed the anti-inflammatory, analgesic, antibacterial, antioxidant, antihypertensive and hypoglycemic effects of the four Biebersteinia species. We believe that the present review will facilitate the exploration of traditional uses and pharmacological properties of Biebersteinia species, extraction of the NPs and elucidation of their molecular mechanisms, as well as the development of novel drugs based on the reported properties and mode-of-action.


2020 ◽  
Vol 17 (7) ◽  
pp. 780-794
Author(s):  
Nurhayatun S. Abdul Razak ◽  
Joazaizulfazli Jamalis ◽  
Subhash Chander ◽  
Roswanira Abdul Wahab ◽  
Deepak P. Bhagwat ◽  
...  

Coumarin and oxadiazole moieties ubiquitously occur in a wide range of natural products and are valued for their varied and beneficial pharmacological activities. Herein, this review focuses on various documented techniques used by researchers to synthesize an assortment of biologically active coumarin-oxadiazole scaffolds. Also, the common techniques discussed are used to establish the wide-range of biological activities of the synthesized coumarin and oxadiozole derivatives, including; antioxidant, anthelmintic, antimicrobial, anti-tuberculosis, analgesic, anti-inflammatory, cytotoxicity and anticonvulsant. Additionally, the current, well-established drugs synthesized using coumarin-oxadiazole scaffolds are typically dispensed in regular clinical practice are also highlighted in this review paper.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3453
Author(s):  
Jesús G. Zorrilla ◽  
Carlos Rial ◽  
Daniel Cabrera ◽  
José M. G. Molinillo ◽  
Rosa M. Varela ◽  
...  

Aminophenoxazinones are degradation products resulting from the metabolism of different plant species, which comprise a family of natural products well known for their pharmacological activities. This review provides an overview of the pharmacological properties and applications proved by these compounds and their structural derivatives during 2000–2021. The bibliography was selected according to our purpose from the references obtained in a SciFinder database search for the Phx-3 structure (the base molecule of the aminophenoxazinones). Compounds Phx-1 and Phx-3 are among the most studied, especially as anticancer drugs for the treatment of gastric and colon cancer, glioblastoma and melanoma, among others types of relevant cancers. The main information available in the literature about their mechanisms is also described. Similarly, antibacterial, antifungal, antiviral and antiparasitic activities are presented, including species related directly or indirectly to significant diseases. Therefore, we present diverse compounds based on aminophenoxazinones with high potential as drugs, considering their levels of activity and few adverse effects.


2020 ◽  
Vol 26 ◽  
Author(s):  
Shaik Ibrahim Khalivulla ◽  
Arifullah Mohammed ◽  
Kokkanti Mallikarjuna

Background: Diabetes is a chronic disease affecting a large population worldwide and stands as one of the major global health challenges to be tackled. According to World Health Organization, about 400 million are having diabetes worldwide and it is the seventh leading cause of deaths in 2016. Plant based natural products had been in use from ancient time as ethnomedicine for the treatment of several diseases including diabetes. As a result of that, there are several reports on plant based natural products displaying antidiabetic activity. In the current review, such antidiabetic potential compounds reported from all plant sources along with their chemical structures are collected, presented and discussed. This kind of reports are essential to pool the available information to one source followed by statistical analysis and screening to check the efficacy of all known compounds in a comparative sense. This kind of analysis can give rise to few numbers of potential compounds from hundreds, whom can further be screened through in vitro and in vivo studies, and human trails leading to the drug development. Methods: Phytochemicals along with their potential antidiabetic property were classified according to their basic chemical skeleton. The chemical structures of all the compounds with antidiabetic activities were elucidated in the present review. In addition to this, the distribution and their other remarkable pharmacological activities of each species is also included. Results: The scrutiny of literature led to identification of 44 plants with antidiabetic compounds (70) and other pharmacological activities. For the sake of information, the distribution of each species in the world is given. Many plant derivatives may exert antidiabetic properties by improving or mimicking the insulin production or action. Different classes of compounds including sulfur compounds (1-4), alkaloids (5-11), phenolic compounds (12-17), tannins (18-23), phenylpropanoids (24-27), xanthanoids (28-31), amino acid (32), stilbenoid (33), benzofuran (34), coumarin (35), flavonoids (36-49) and terpenoids (50-70) were found to be active potential compounds for antidiabetic activity. Of the 70 listed compounds, majorly 17 compounds are from triterpenoids, 13 flavonoids and 7 are from alkaloids. Among all the 44 plant species, maximum number (7) of compounds are reported from Lagerstroemia speciosa followed by Momordica charantia (6) and S. oblonga with 5 compounds. Conclusion: This is the first paper to summarize the established chemical structures of phytochemicals that have been successfully screened for antidiabetic potential and their mechanisms of inhibition. The reported compounds could be considered as potential lead molecules for the treatment of type-2 diabetes. Further, molecular and clinical trials are required to select and establish the therapeutic drug candidates.


2019 ◽  
Vol 19 (16) ◽  
pp. 1298-1368 ◽  
Author(s):  
Ankit Jain ◽  
Poonam Piplani

: Triazole is a valuable platform in medicinal chemistry, possessing assorted pharmacological properties, which could play a major role in the common mechanisms associated with various disorders like cancer, infections, inflammation, convulsions, oxidative stress and neurodegeneration. Structural modification of this scaffold could be helpful in the generation of new therapeutically useful agents. Although research endeavors are moving towards the growth of synthetic analogs of triazole, there is still a lot of scope to achieve drug discovery break-through in this area. Upcoming therapeutic prospective of this moiety has captured the attention of medicinal chemists to synthesize novel triazole derivatives. The authors amalgamated the chemistry, synthetic strategies and detailed pharmacological activities of the triazole nucleus in the present review. Information regarding the marketed triazole derivatives has also been incorporated. The objective of the review is to provide insights to designing and synthesizing novel triazole derivatives with advanced and unexplored pharmacological implications.


2021 ◽  
Author(s):  
Zhengyan Guo ◽  
Yue Tang ◽  
Wei Tang ◽  
Yihua Chen

Heptose-containing natural products hold great potential as drugs for the treatment of human and animal diseases.


Sign in / Sign up

Export Citation Format

Share Document