scholarly journals Improved OAM-Based Radar Targets Detection Using Uniform Concentric Circular Arrays

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Mingtuan Lin ◽  
Yue Gao ◽  
Peiguo Liu ◽  
Jibin Liu

Without any relative moves or beam scanning, the novel Orbital-Angular-Momentum- (OAM-) based radar targets detection technique using uniform concentric circular arrays (UCCAs) shows the azimuthal estimation ability, which provides new perspective for radar system design. However, the main estimation method, that is, Fast Fourier Transform (FFT), under this scheme suffers from low resolution. As a solution, this paper rebuilds the OAM-based radar targets detection model and introduces the multiple signal classification (MUSIC) algorithm to improve the resolution for detecting targets within the main lobes. The spatial smoothing technique is proposed to tackle the coherent problem brought by the proposed model. Analytical study and simulation demonstrate the superresolution estimation capacity the MUSIC algorithm can achieve for detecting targets within the main lobes. The performance of the MUSIC algorithm to detect targets not illuminated by the main lobes is further evaluated. Despite the fact that MUSIC algorithm loses the resolution advantage under this case, its estimation is more robust than that of the FFT method. Overall, the proposed MUSIC algorithm for the OAM-based radar system demonstrates the superresolution ability for detecting targets within the main lobes and good robustness for targets out of the main lobes.

Author(s):  
Seema Rani ◽  
Avadhesh Kumar ◽  
Naresh Kumar

Background: Duplicate content often corrupts the filtering mechanism in online question answering. Moreover, as users are usually more comfortable conversing in their native language questions, transliteration adds to the challenges in detecting duplicate questions. This compromises with the response time and increases the answer overload. Thus, it has now become crucial to build clever, intelligent and semantic filters which semantically match linguistically disparate questions. Objective: Most of the research on duplicate question detection has been done on mono-lingual, majorly English Q&A platforms. The aim is to build a model which extends the cognitive capabilities of machines to interpret, comprehend and learn features for semantic matching in transliterated bi-lingual Hinglish (Hindi + English) data acquired from different Q&A platforms. Method: In the proposed DQDHinglish (Duplicate Question Detection) Model, firstly language transformation (transliteration & translation) is done to convert the bi-lingual transliterated question into a mono-lingual English only text. Next a hybrid of Siamese neural network containing two identical Long-term-Short-memory (LSTM) models and Multi-layer perceptron network is proposed to detect semantically similar question pairs. Manhattan distance function is used as the similarity measure. Result: A dataset was prepared by scrapping 100 question pairs from various social media platforms, such as Quora and TripAdvisor. The performance of the proposed model on the basis of accuracy and F-score. The proposed DQDHinglish achieves a validation accuracy of 82.40%. Conclusion: A deep neural model was introduced to find semantic match between English question and a Hinglish (Hindi + English) question such that similar intent questions can be combined to enable fast and efficient information processing and delivery. A dataset was created and the proposed model was evaluated on the basis of performance accuracy. To the best of our knowledge, this work is the first reported study on transliterated Hinglish semantic question matching.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 708
Author(s):  
Wenbo Liu ◽  
Fei Yan ◽  
Jiyong Zhang ◽  
Tao Deng

The quality of detected lane lines has a great influence on the driving decisions of unmanned vehicles. However, during the process of unmanned vehicle driving, the changes in the driving scene cause much trouble for lane detection algorithms. The unclear and occluded lane lines cannot be clearly detected by most existing lane detection models in many complex driving scenes, such as crowded scene, poor light condition, etc. In view of this, we propose a robust lane detection model using vertical spatial features and contextual driving information in complex driving scenes. The more effective use of contextual information and vertical spatial features enables the proposed model more robust detect unclear and occluded lane lines by two designed blocks: feature merging block and information exchange block. The feature merging block can provide increased contextual information to pass to the subsequent network, which enables the network to learn more feature details to help detect unclear lane lines. The information exchange block is a novel block that combines the advantages of spatial convolution and dilated convolution to enhance the process of information transfer between pixels. The addition of spatial information allows the network to better detect occluded lane lines. Experimental results show that our proposed model can detect lane lines more robustly and precisely than state-of-the-art models in a variety of complex driving scenarios.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1815
Author(s):  
Diego I. Gallardo ◽  
Mário de Castro ◽  
Héctor W. Gómez

A cure rate model under the competing risks setup is proposed. For the number of competing causes related to the occurrence of the event of interest, we posit the one-parameter Bell distribution, which accommodates overdispersed counts. The model is parameterized in the cure rate, which is linked to covariates. Parameter estimation is based on the maximum likelihood method. Estimates are computed via the EM algorithm. In order to compare different models, a selection criterion for non-nested models is implemented. Results from simulation studies indicate that the estimation method and the model selection criterion have a good performance. A dataset on melanoma is analyzed using the proposed model as well as some models from the literature.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Haiwen Li ◽  
Nae Zheng ◽  
Xiyu Song ◽  
Yinghua Tian

The estimation speed of positioning parameters determines the effectiveness of the positioning system. The time of arrival (TOA) and direction of arrival (DOA) parameters can be estimated by the space-time two-dimensional multiple signal classification (2D-MUSIC) algorithm for array antenna. However, this algorithm needs much time to complete the two-dimensional pseudo spectral peak search, which makes it difficult to apply in practice. Aiming at solving this problem, a fast estimation method of space-time two-dimensional positioning parameters based on Hadamard product is proposed in orthogonal frequency division multiplexing (OFDM) system, and the Cramer-Rao bound (CRB) is also presented. Firstly, according to the channel frequency domain response vector of each array, the channel frequency domain estimation vector is constructed using the Hadamard product form containing location information. Then, the autocorrelation matrix of the channel response vector for the extended array element in frequency domain and the noise subspace are calculated successively. Finally, by combining the closed-form solution and parameter pairing, the fast joint estimation for time delay and arrival direction is accomplished. The theoretical analysis and simulation results show that the proposed algorithm can significantly reduce the computational complexity and guarantee that the estimation accuracy is not only better than estimating signal parameters via rotational invariance techniques (ESPRIT) algorithm and 2D matrix pencil (MP) algorithm but also close to 2D-MUSIC algorithm. Moreover, the proposed algorithm also has certain adaptability to multipath environment and effectively improves the ability of fast acquisition of location parameters.


2021 ◽  
Author(s):  
Masaki Uto

AbstractPerformance assessment, in which human raters assess examinee performance in a practical task, often involves the use of a scoring rubric consisting of multiple evaluation items to increase the objectivity of evaluation. However, even when using a rubric, assigned scores are known to depend on characteristics of the rubric’s evaluation items and the raters, thus decreasing ability measurement accuracy. To resolve this problem, item response theory (IRT) models that can estimate examinee ability while considering the effects of these characteristics have been proposed. These IRT models assume unidimensionality, meaning that a rubric measures one latent ability. In practice, however, this assumption might not be satisfied because a rubric’s evaluation items are often designed to measure multiple sub-abilities that constitute a targeted ability. To address this issue, this study proposes a multidimensional IRT model for rubric-based performance assessment. Specifically, the proposed model is formulated as a multidimensional extension of a generalized many-facet Rasch model. Moreover, a No-U-Turn variant of the Hamiltonian Markov chain Monte Carlo algorithm is adopted as a parameter estimation method for the proposed model. The proposed model is useful not only for improving the ability measurement accuracy, but also for detailed analysis of rubric quality and rubric construct validity. The study demonstrates the effectiveness of the proposed model through simulation experiments and application to real data.


Author(s):  
Xiongbin Peng ◽  
Yuwu Li ◽  
Wei Yang ◽  
Akhil Garg

Abstract In the battery thermal management system (BMS), the state of charge (SOC) is a very influential factor, which can prevent overcharge and over-discharge of the lithium-ion battery (LIB). This paper proposed a battery modeling and online battery parameter identification method based on the Thevenin equivalent circuit model (ECM) and recursive least squares (RLS) algorithm. The proposed model proved to have high accuracy. The error between the ECM terminal voltage value and the actual value basically fluctuates between ±0.1V. The extended Kalman filter (EKF) algorithm and the unscented Kalman filter (UKF) algorithm were applied to estimate the SOC of the battery based on the proposed model. The SOC experimental results obtained under dynamic stress test (DST), federal urban driving schedule (FUDS), and US06 cycle conditions were analyzed. The maximum deviation of the SOC based on EKF was 1.4112%~2.5988%, and the maximum deviation of the SOC based on UKF was 0.3172%~0.3388%. The SOC estimation method based on UKF and RLS provides a smaller deviation and better adaptability in different working conditions, which makes it more implementable in a real-world automobile application.


2021 ◽  
Vol 15 (4) ◽  
pp. 18-30
Author(s):  
Om Prakash Samantray ◽  
Satya Narayan Tripathy

There are several malware detection techniques available that are based on a signature-based approach. This approach can detect known malware very effectively but sometimes may fail to detect unknown or zero-day attacks. In this article, the authors have proposed a malware detection model that uses operation codes of malicious and benign executables as the feature. The proposed model uses opcode extract and count (OPEC) algorithm to prepare the opcode feature vector for the experiment. Most relevant features are selected using extra tree classifier feature selection technique and then passed through several supervised learning algorithms like support vector machine, naive bayes, decision tree, random forest, logistic regression, and k-nearest neighbour to build classification models for malware detection. The proposed model has achieved a detection accuracy of 98.7%, which makes this model better than many of the similar works discussed in the literature.


Author(s):  
Xu Wang ◽  
Hongyang Gu ◽  
Tianyang Wang ◽  
Wei Zhang ◽  
Aihua Li ◽  
...  

AbstractThe fault diagnosis of bearings is crucial in ensuring the reliability of rotating machinery. Deep neural networks have provided unprecedented opportunities to condition monitoring from a new perspective due to the powerful ability in learning fault-related knowledge. However, the inexplicability and low generalization ability of fault diagnosis models still bar them from the application. To address this issue, this paper explores a decision-tree-structured neural network, that is, the deep convolutional tree-inspired network (DCTN), for the hierarchical fault diagnosis of bearings. The proposed model effectively integrates the advantages of convolutional neural network (CNN) and decision tree methods by rebuilding the output decision layer of CNN according to the hierarchical structural characteristics of the decision tree, which is by no means a simple combination of the two models. The proposed DCTN model has unique advantages in 1) the hierarchical structure that can support more accuracy and comprehensive fault diagnosis, 2) the better interpretability of the model output with hierarchical decision making, and 3) more powerful generalization capabilities for the samples across fault severities. The multiclass fault diagnosis case and cross-severity fault diagnosis case are executed on a multicondition aeronautical bearing test rig. Experimental results can fully demonstrate the feasibility and superiority of the proposed method.


2020 ◽  
Vol 9 (1) ◽  
pp. 61-81
Author(s):  
Lazhar BENKHELIFA

A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by applying it to two real data sets.


Author(s):  
Elhamh Yahya Hussein Al- alawi, Suad Said Ali Aldaghaishi, A

  This study aims to design a new theoretical framework to help the Holy Quran memorizers not only to memories the verses but also to retain them. This design goes in accordance with the new perspective of data processing which points to the fact that profound data processing has a great impact on remembering the verses through three major ways: Keyword Method as a code for the word to be remembered, Colour as a way to recall information as evident by a number of research studies and Story Strategy as a way to enable recalling of verses by linking the words to be remembered with an innovative story with reference to the science of event; Surat Al Hadid as an example. In order to prove the effectiveness of this proposal, a descriptive analysis and semi experimental study was conducted on a sample of Holy Quran Circle students ‘Halaqah’. 80 male and female students were divided into four groups, two experimental groups and two controlled groups. The findings of the study have demonstrated positive effect of the proposed model in ease of memorizing verses of the Holy Quran. The results show that there is a significant difference between male and female in goodness of their hafiz for favor of male group.    


Sign in / Sign up

Export Citation Format

Share Document