scholarly journals Dissolution of (1-3),(1-4)-β-Glucans in Pressurized Hot Water: Quantitative Assessment of the Degradation and the Effective Extraction

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Óscar Benito-Román ◽  
Alexandra Martín-Cortés ◽  
María José Cocero ◽  
Esther Alonso

The purpose of this work was to study the behavior of (1-3)(1-4)-β-D-glucan in pressurized hot water. For this purpose, solid β-glucan (450 kDa) was put in water and heated at different temperatures (120, 150, and 170°C) for different times (5 to 360 minutes). At 120°C it was found that the highest soluble β-glucan concentration was measured after 60 minutes; at 150 and 170°C optimal times were 45 and 20 minutes, respectively. The maximum amount of β-glucan dissolved in each of the optimal conditions was 1.5, 2.2, and 2.0 g/L, respectively. Under those conditions an important reduction was observed in the molecular weight: at 120°C and 60 min it was 63 kDa; at 150°C and 45 min it was reduced down to 8 kDa; and at 170°C and 20 min it was only 7 kDa. Besides this reduction in the MW some hydrolysis products, such as glucose and HMF, were observed. These results revealed the convenience of using PHW to dissolve β-glucans since the operation times, compared to the conventional process (55°C, 3 h), were reduced despite the fact that the MW was significantly reduced once the β-glucan was dissolved; therefore, PHW can be used to extract β-glucans from barley under controlled conditions in order to prevent severe degradation.

1985 ◽  
Vol 54 (02) ◽  
pp. 533-538 ◽  
Author(s):  
Wilfried Thiel ◽  
Ulrich Delvos ◽  
Gert Müller-Berghaus

SummaryA quantitative determination of soluble fibrin in plasma was carried out by affinity chromatography. For this purpose, desAA-fibrin and fibrinogen immobilized on Sepharose 4B were used at the stationary side whereas batroxobin-induced 125I-desAA-fibrin or thrombin-induced 125I-desAABB-fibrin mixed with plasma containing 131I-fibrinogen represented the fluid phase. The binding characteristics of these mixtures to the immobilized proteins were compared at 20° C and 37° C. Complete binding of both types of fibrin to the immobilized desAA-fibrin was always seen at 20° C as well as at 37° C. However, binding of soluble fibrin was accompanied by substantial binding of fibrinogen that was more pronounced at 20° C. Striking differences depending on the temperature at which the affinity chromatography was carried out, were documented for the fibrinogen-fibrin interaction. At 20° C more than 90% of the applied desAA-fibrin was bound to the immobilized fibrinogen whereas at 37° C only a mean of 17% were retained at the fibrinogen-Sepharose column. An opposite finding with regard to the tested temperature was made with the desAABB-fibrin. Nearly complete binding to insolubilized fibrinogen was found at 37° C (95%) but only 58% of the desAABB-fibrin were bound at 20° C. The binding patterns did not change when the experiments were performed in the presence of calcium ions. The opposite behaviour of the two types of soluble fibrin to immobilized fibrinogen at the different temperatures, together with the substantial binding of fibrinogen in the presence of soluble fibrin to insolubilized fibrin in every setting tested, devaluates affinity chromatography as a tool in the quantitative assessment of soluble fibrin in patients’ plasma.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4443
Author(s):  
Jiangyan Huo ◽  
Min Lei ◽  
Feifei Li ◽  
Jinjun Hou ◽  
Zijia Zhang ◽  
...  

A novel homogeneous polysaccharide named GEP-1 was isolated and purified from Gastrodia elata (G. elata) by hot-water extraction, ethanol precipitation, and membrane separator. GEP-1, which has a molecular weight of 20.1 kDa, contains a polysaccharide framework comprised of only glucose. Methylation and NMR analysis showed that GEP-1 contained 1,3,6-linked-α-Glcp, 1,4-linked-α-Glcp, 1,4-linked-β-Glcp and 1,4,6-linked-α-Glcp. Interestingly, GEP-1 contained citric acid and repeating p-hydroxybenzyl alcohol as one branch. Furthermore, a bioactivity test showed that GEP-1 could significantly promote the growth of Akkermansia muciniphila (A. muciniphila) and Lacticaseibacillus paracasei (L.paracasei) strains. These results implied that GEP-1 might be useful for human by modulating gut microbiota.


Author(s):  
Oleksiy Andryushayev ◽  
Olena Ruban ◽  
Yuliia Maslii ◽  
Inna Rusak

The aim. To determine the intensified method of extraction of phenolic compounds from Acorus calamus leaves and optimal conditions for the process. Materials and methods. In order to develop the optimal intensified method of extraction samples were prepared in different conditions of raw materials-extractant ratio, temperature, time and multiplicity. As a raw materials spectrophotometrically pre-standardized Acorus calamus leaves were used. The extraction was carried out in a hermetically sealed ultrasonic extraction reactor PEX 1 (REUS, Contes, France). As the criteria of extraction efficiency were indicators of dry residue and total amount of flavonoids determined using methods described in State Pharmacopoeia of Ukraine. The amount of flavonoids was determined spectrophotometrically on a certified device Specord 200 (Analytik Jena, Germany). Results. According to our research results it was found that ultrasonic action and addition of surfactant significantly improves the efficiency of the extraction process. The optimal conditions for the process were determined. Experimentally proved that the rational raw material-extractant ratio is 1:15. Comparative study of the extraction process with different temperatures showed that the highest amount of extractives is achieved at temperature 70 °C and 45 min of duration. The optimal extraction multiplicity is 3. Conclusions. As a result of the study, the intensified extraction method for Acorus calamus leaves – re-maceration with ultrasound – was established. The conducted researches allowed to develop the method of extraction, expedient in the conditions of the modern pharmaceutical industry.


2012 ◽  
Vol 06 (04) ◽  
pp. 361-369 ◽  
Author(s):  
Serdar Baglar ◽  
Adil Nalcaci ◽  
Mustafa Tastekin

ABSTRACTObjective: The aim of this study was to examine the effect of temperature on fluoride uptake by enamel specimens from a 0.05% NaF-fluoridated mouthrinse (Oral-B Advantage; Oral-B Laboratories, Newbridge, UK).Methods: Enamel specimens were prepared from extracted human maxillary central incisors. A fluoride-specific ion electrode was used to measure the uptake from a 2 ppm fluoride solution containing 50.0 mL of distilled water, total ion strength adjustment buffer, and fluoridated rinse at 3 different temperatures (room temperature, 25°C; human body temperature, 37°C; hyper-fever temperature, 43°C). One-way analysis of variance and least significant difference were used to assess intragroup and intergroup differences (P<.05).Results: The study found that both the amount and the rate of fluoride uptake increased significantly with increase in temperature. This effect was particularly noticeable at 43°C.Conclusions: The temperature of the NaF mouthrinse may easily and safely be increased beyond room temperature by placing a container of the NaF mouthrinse in a bowl of hot water, allowing greater fluoride penetration into the enamel from the mouthrinse when used at home as a routine prophylactic agent. (Eur J Dent 2012;6:361-369)


2020 ◽  
Vol 992 ◽  
pp. 311-316
Author(s):  
T.A. Molodtsova ◽  
E.V. Boldyreva ◽  
V.A. Klushin

The kinetics of the 2,5-dimethyl ester of furandicarboxylic acid transesterification in the presence of various catalysts at different temperatures was investigated. It was shown that the catalytic activity follows the order: Mn (OAc)2 < Co (OAc)2 < Zn (OAc)2 < Ti (OBu)4. The transesterification catalyzed by Ti (OBu)4 leads to the formation of the polymers with the higher molecular weight compared to Me (OAc)2.


1998 ◽  
Vol 8 (3) ◽  
pp. 347-355 ◽  
Author(s):  
Mary Bettey ◽  
W. E. Finch-Savage

AbstractPlants respond to sub-optimal conditions by the synthesis of specific ‘stress’ proteins, and these are thought to play a role in stress tolerance. Some of these proteins accumulate during late seed development, arguably to protect against damage during post-maturation drying and subsequent imbibition, prior to germination. Seed vigour is also determined during this late stage of seed development. High vigour seeds are those that can withstand the desiccation required for storage and successfully germinate under sub-optimal conditions to establish healthy seedlings. If stress proteins are involved in tolerating stress conditions, then they are likely to be important determinants of seed vigour. In this work the relationship between seed vigour (measured by seed germination performance following rapid aging, or under water stress) in Brassica oleracea var. capitata and the content of two classes of stress protein (dehydrins and a low molecular weight heat shock protein HSP17.6) at maturity was examined. Dehydrins did not show a positive relationship with seed performance. However, the protein HSP17.6 showed a positive correlation with seed performance, and a treatment that reduced the amount of this protein in the seed also caused a reduction in subsequent seed performance.


The cracking of cyclo pentene on silica-alumina was studied in a flow system over the temperature range 368 to 505 °C. The analysis of the products was carried out by gas-liquid chromatographic techniques and the design of the apparatus made it possible to measure the pressures of compounds of low molecular weight at a series of points along the catalyst bed. Partial analyses were made of the extremely wide range of products of high molecular weight collected at the end of the reactor for reactions at three different temperatures. The results obtained were sufficiently detailed to provide activation energies for the for­mation of a number of the products and for the decomposition of cyclo pentene and to per­mit the application of thermodynamical calculations to ascertain the source of substances such as cyclo pentane and methyl cyclo pentane. The results of the flow experiments together with a subsidiary experiment on the reactions which occurred to cyclo pentene at 68 °C on the catalyst in a static system indicated that the formation, polymerization and isomerization of the surface complexes to condensed six-membered ring systems must be extremely rapid processes in the temperature range required for the catalytic cracking of cyclo pentene. These processes probably occur through the formation of carbonium ions and consequently the formation of these ions is unlikely to be the slow step in the catalytic cracking of olefins. The rate of the cracking reaction may depend on the rate of decomposition of carbonium ions considerably larger in size than the original olefin.


2019 ◽  
Vol 820 ◽  
pp. 179-187
Author(s):  
Fatima Gugouch ◽  
Sara Sandabad ◽  
Nadia Mouhib ◽  
Abderrazak En-Naji ◽  
Mohamed El Ghorba

The Chlorinated Polyvinyl Chloride pipes used for the supply of cold and hot water are designed and manufactured for a 50 years predictive life, but defects and harmfulness may occur during the transport process, storage and operation of tubes that significantly affect these forecasts. This work deals with the study of the mechanical behavior of Chlorinated Polyvinyl Chloride (CVPC) specimens subjected to tensile tests under the effect of temperature. Moreover, a study of damage evolution by the ultimate energy makes it possible to determine the three stages of the lifetime of the test pieces studied. On the basis of the stress-strain variation curves plotted from the experimental results, the critical value of the fraction of life corresponding to the acceleration of the damage was determined.


2019 ◽  
Vol 34 (6) ◽  
pp. 464-478 ◽  
Author(s):  
Siriporn Tanodekaew ◽  
Somruethai Channasanon ◽  
Pakkanun Kaewkong

Several processes have been used to produce polylactide for bone replacement. The challenge remains, however, to produce these devices by a simpler and more economical process. In this study, a method of combining powder and liquid parts was introduced. Star-shaped polylactides with molecular weights ranging from 3 to 16 kg/mol were synthesized and blended with a linear polylactide (Mw = 188 kg/mol) using the technique of emulsion solvent evaporation. The blends in a form of spherical powder were characterized by scanning electron microscopy, gel permeation chromatography, and particle size analysis. The heat-curing polylactide was fabricated by mixing the powder with triethylene glycol dimethacrylate, molded, and then heated in a hot water bath to solidify. The effects of powder composition in terms of amount and molecular weight of the star-shaped polylactide on mechanical properties were investigated. The results showed an increase in flexural strength with increase in the amount of star-shaped polylactide. The powder comprised star-shaped polylactide having the molecular weight of 10,770 g/mol, not less than 80wt%, offered the fabricated heat-curing polylactide with high strength ranging from 95 to 100 MPa. This formulation was further incorporated with hydroxyapatite to improve biocompatibility and subjected to degradation at 37°C. Mechanical test and weight loss determination together with biological test were conducted at certain times during degradation of the materials. Both materials with and without hydroxyapatite showed mechanical stability upon degradation for at least 6 months, but the one with hydroxyapatite revealed significantly better bioactivity at the end of 1-year follow-up study, making it the most promising material for bone implants.


Sign in / Sign up

Export Citation Format

Share Document