scholarly journals Pattern of Bacterial Pathogens and Their Susceptibility Isolated from Surgical Site Infections at Selected Referral Hospitals, Addis Ababa, Ethiopia

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Walelign Dessie ◽  
Gebru Mulugeta ◽  
Surafael Fentaw ◽  
Amete Mihret ◽  
Mulu Hassen ◽  
...  

Background. The emergence of multidrug resistant bacterial pathogens in hospitals is becoming a challenge for surgeons to treat hospital acquired infections.Objective. To determine bacterial pathogens and drug susceptibility isolated from surgical site infections at St. Paul Specialized Hospital Millennium Medical College and Yekatit 12 Referral Hospital Medical College, Addis Ababa, Ethiopia.Methods. A cross-sectional study was conducted between October 2013 and March 2014 on 107 surgical site infected patients. Wound specimens were collected using sterile cotton swab and processed as per standard operative procedures in appropriate culture media; and susceptibility testing was done using Kirby-Bauer disc diffusion technique. The data were analyzed by using SPSS version 20.Result. From a total of 107 swabs collected, 90 (84.1%) were culture positive and 104 organisms were isolated.E. coli(24 (23.1%)) was the most common organism isolated followed by multidrug resistantAcinetobacterspecies (23 (22.1%)). More than 58 (75%) of the Gram negative isolates showed multiple antibiotic resistance (resistance ≥ 5 drugs). Pan-antibiotic resistance was noted among 8 (34.8%)Acinetobacterspecies and 3 (12.5%)E. coli. This calls for abstinence from antibiotic abuse.Conclusion. Gram negative bacteria were the most important isolates accounting for 76 (73.1%). Ampicillin, amoxicillin, penicillin, cephazoline, and tetracycline showed resistance while gentamicin and ciprofloxacin were relatively effective antimicrobials.

2019 ◽  
Vol 13 (1) ◽  
pp. 301-307
Author(s):  
Alem A. Kalayu ◽  
Ketema Diriba ◽  
Chuchu Girma ◽  
Eman Abdella

Background: Surgical Site Infections (SSIs) are among the frequently reported healthcare-acquired infections worldwide. Successful treatment of SSIs is affected by the continuous evolvement of drug-resistant microbes. This study investigated the incidence of SSIs, identifying the major etiologic agents and their drug resistance patterns in Yekatit 12 Hospital, Ethiopia. Methods: A cross-sectional study was conducted on 649 patients who underwent surgery at Yekatit 12 hospital from April 2016 to April 2017. Socio-demographic and clinical data were collected from each patient on admission. After surgery, they were followed for SSI occurrence. SSI was initially diagnosed by a senior surgeon based on standard clinical criteria and then confirmed by culture. Isolates were tested for drug resistance according to the clinical and laboratory standards institute guideline. Results: Of the 649 study participants, 56% were females. Their age ranged from 9 months to 88 years with a median age of 37 years. The incidence of culture-confirmed SSI was 10.2% (66/649) where 73 isolates were recovered. About two-third of the isolates were Gram-positive bacteria. Staphylococcus aureus was the most frequently isolated (27/73, 37%) followed by Coagulase-negative staphylococci (18/73, 24.7%), Escherichia coli (11/73, 15.1%) and Klebsiella species (10/73, 13.7%). About 89% and 44% of S. aureus isolates were resistant to penicillin and trimethoprim-sulfamethoxazole, respectively. MRSA constituted 11% of the S. aureus isolates. All the Gram-negative isolates were resistant to ampicillin and trimethoprim-sulfamethoxazole but susceptible to amikacin and meropenem. Klebsiella species showed 70-100% resistance to ceftazidime, cefuroxime, augmentin, chloramphenicol, ciprofloxacin, cefepime and gentamicin. About 82% of E. coli isolates were resistant for chloramphenicol, cefepime, ceftazidime, augmentin, cefuroxime and 64% for gentamicin and ciprofloxacin. Conclusion: The incidence of surgical site infection in Yekatit 12 hospital is 10.2%. Most of the SSIs were due to Gram-positive bacteria. Gram-negative isolates showed high resistance to the most commonly prescribed drugs. No resistance was found for meropenem indicating the absence of carbapenem-resistant bacteria. SSI treatments should be guided by culture and drug resistance test. Better infection prevention practices and continuous surveillance of antimicrobial resistance in the hospital are recommended for better patient care.


2016 ◽  
Vol 3 (2) ◽  
pp. 32-35 ◽  
Author(s):  
Ganesh Shah ◽  
Bhishma Pokhrel ◽  
Anish Kumar Shah ◽  
Puspa Bahadur Bista ◽  
Asmita Bhattarai

Introductions: Urinary tract infection (UTI) is a common bacterial infection affecting children. A prompt recognition and accurate antimicrobial management are vital to prevent kidney damage. This study aims to determine the bacterial pathogens and their patterns of antimicrobial resistance in children presenting with UTI.Methods: This was a cross sectional study done at Patan Hospital, Patan Academy of Health Sciences, from Nov 2012 to Oct 2016. There were 88 children between age group of 1 to 14 years with culture proven UTI. The bacterial pathogens and antibiotic resistance were analysed.Results: Three most common organisms isolated were E. Coli 60 (68%), Klebsiella species 15 (17%) and Proteus 7 (8%). The resistance of E. Coli to ampicillin, ofloxacin, cefotaxime, gentamicin and amikacin were 51 (85%), 49 (82%), 45 (75%), 17 (28%) and 2 (3%) respectively. The resistance to ampicillin was Klebsiella species 13 (87%), Proteus 6 (86%) and Enterococcus 3 (60%).Conclusions: The E. Coli was leading bacterial pathogen causing UTI in children, with ampicillin resistance occurring in more than half of these cases. Amikacin and gentamicin had lower antibiotic resistance and can be used for treatment of UTI in children.Journal of Patan Academy of Health Sciences. 2016 Dec;3(2):32-35


2021 ◽  
Vol 12 ◽  
Author(s):  
Piotr Majewski ◽  
Anna Gutowska ◽  
David G. E. Smith ◽  
Tomasz Hauschild ◽  
Paulina Majewska ◽  
...  

Objectives: The growing incidence of multidrug-resistant (MDR) bacteria is an inexorable and fatal challenge in modern medicine. Colistin is a cationic polypeptide considered a “last-resort” antimicrobial for treating infections caused by MDR Gram-negative bacterial pathogens. Plasmid-borne mcr colistin resistance emerged recently, and could potentially lead to essentially untreatable infections, particularly in hospital and veterinary (livestock farming) settings. In this study, we sought to establish the molecular basis of colistin-resistance in six extraintestinal Escherichia coli strains.Methods: Molecular investigation of colistin-resistance was performed in six extraintestinal E. coli strains isolated from patients hospitalized in Medical University Hospital, Bialystok, Poland. Complete structures of bacterial chromosomes and plasmids were recovered with use of both short- and long-read sequencing technologies and Unicycler hybrid assembly. Moreover, an electrotransformation assay was performed in order to confirm IncX4 plasmid influence on colistin-resistance phenotype in clinical E. coli strains.Results: Here we report on the emergence of six mcr-1.1-producing extraintestinal E. coli isolates with a number of virulence factors. Mobile pEtN transferase-encoding gene, mcr-1.1, has been proved to be encoded within a type IV secretion system (T4SS)-containing 33.3 kbp IncX4 plasmid pMUB-MCR, next to the PAP2-like membrane-associated lipid phosphatase gene.Conclusion: IncX4 mcr-containing plasmids are reported as increasingly disseminated among E. coli isolates, making it an “epidemic” plasmid, responsible for (i) dissemination of colistin-resistance determinants between different E. coli clones, and (ii) circulation between environmental, industrial, and clinical settings. Great effort needs to be taken to avoid further dissemination of plasmid-mediated colistin resistance among clinically relevant Gram-negative bacterial pathogens.


Author(s):  
Mohammad Hasan Namaei ◽  
Masoud Yousefi ◽  
Parvin Askari ◽  
Babak Roshanravan ◽  
Ali Hashemi ◽  
...  

Background and Objectives: Non-fermentative Gram-negative Bacilli (NFGNB) is known as a major cause of health- care-associated infections with high levels of antibiotic resistance. The aim of this study was to investigate the antibiotic resistance profiles and molecular characteristics of metallo-beta-lactamase (MBL)-producing NFGNB. Materials and Methods: In this cross-sectional study, the antibiotic resistance profile of 122 clinical NFGNB isolates was determined by the Kirby-Bauer disk diffusion and microdilution broth methods. Bacterial isolates were investigated for the detection of MBLs production using the combination disk diffusion Test (CDDT). The existence of bla , bla , and bla NDM genes in all carbapenem-resistant isolates was determined employing polymerase chain reaction (PCR) assays. Results: High resistance in Pseudomonas aeruginosa was reported to cefotaxime and minocycline, whereas Acinetobacter baumannii isolates were highly resistant to all antibiotics except colistin. Multidrug resistance (MDR)-NFGNB (66% vs. 12.5%, P=0.0004) and extensively drug resistant (XDR)-NFGNB (55.7% vs. 12.5%, P=0.001) isolates were significantly more common in hospitalized patients than in outpatients. The production of MBL was seen in 40% of P. aeruginosa and 93.3% of A. baumannii isolates. It was found that 33.3% and 46.7% of carbapenem-resistant P. aeruginosa isolates, and 13.3% and 28.9% of carbapenem-resistant A. baumannii isolates were harboring bla IMP-1 and bla VIM-1 genes, respectively. The incidence of MDR (98.2% vs. 28.3%, P<0.001) and XDR (96.4% vs. 11.7%, P<0.001) in MBL-producing NFGNB isolates was significantly higher than non-MBL-producing isolates. Conclusion: This study demonstrated a higher rate of resistance among NFGNB isolates with an additional burden of MBL production within them, warranting a need for robust microbiological surveillance and accurate detection of MBL producers among the NFGNB.


2020 ◽  
Author(s):  
Jean-Marie Liesse Iyamba ◽  
Rodriguez Musomoni Mabankama ◽  
Cyprien Mbundu Lukukula ◽  
Joseph Welo Unya ◽  
Daniel Tassa Okombe ◽  
...  

Abstract Background: Enterobacteriaceae are one of the most predominant pathogen in surgical site infections. In recent years we oberved increase in resistance among bacteria from surgical site infections. The aim of this study was to evaluate antimicrobial suceptibility pattern of Enterobacteriaceae isolates from surgical site infections, the biofilm formation and the production of OXA-48 carbapenemase.Methods: A total of 41 Enterobacteriaceae (19 Escherchia coli, 8 Enterobacter sp., 9 Citrobacter sp., and 5 Serratia sp. ) clinical isolates were collected from patients with SSI in Hôpital Saint Joseph (Kinshasa) for diagnostic purposes. The pus samples were cultured and the antibiotic susceptibility profile of the isolates were determined by disk-diffusion method following Clinical and Laboratory Standards Institute 2012 recommendations. OXA-48-producing Enterobacteriaceae were detected using ChromaticTM OXA-48 chromogenic medium. Crystal Violet Staining Method was used to assess the ability of bacteria strains to form a biofilm. Results: All Enterobacteriacea isolates studied were biofilm producers and highly resistant to the majority of antibiotics tested. E. coli, Enterobacter sp., Citrobacter sp., and Serratia sp. were 100 % resistant cefotaxime, imipenem, and amoxicillin-clavulanic acid, and ampicillin. Serratia sp. isolates were 100% and 80% sensitive to norfloxacine and amikacine respectively. There was relationship between antibiotic resistance and biofilm production. E. coli, Enterobacter sp., and Citrobacter sp. strains were all OXA-48 producers.Conclusion: The results of the present study demonstrate the emergence of multidrug resistant organisms, the correlation between antibiotic resistance- biofilm formation and OXA-48 production. These results suggest the implementation of antimicrobial resistance survey programm in order to prevent and combat the spread of multidrug resistant organisms in hospital and community in Democratic Republic of Congo.


2019 ◽  
Vol 70 (5) ◽  
pp. 1778-1783
Author(s):  
Andreea-Loredana Golli ◽  
Floarea Mimi Nitu ◽  
Maria Balasoiu ◽  
Marina Alina Lungu ◽  
Cristiana Cerasella Dragomirescu ◽  
...  

To determine the resistance pattern of bacterial pathogens involved in infections of the patients aged between 18-64 years, admitted in a ICU from a 1518-bed university-affiliated hospital. A retrospective study of bacterial pathogens was carried out on 351 patients aged between 18-64 years admitted to the ICU, from January to December 2017. In this study there were analysed 469 samples from 351 patients (18-64 years). A total of 566 bacterial isolates were obtained, of which 120 strains of Klebsiella spp. (35.39%%), followed by Nonfermenting Gram negative bacilli, other than Pseudomonas and Acinetobacter (NFB) (75- 22.12%), Acinetobacter spp. (53 - 15.63%), Pseudomonas aeruginosa and Proteus (51 - 15.04%), and Escherichia coli (49 - 14.45%). The most common isolates were from respiratory tract (394 isolates � 69.61%). High rates of MDR were found for Pseudomonas aeruginosa (64.70%), MRSA (62.65%) and Klebsiella spp. (53.33%), while almost all of the isolated NFB strains were MDR (97.33%). There was statistic difference between the drug resistance rate of Klebsiella and E. coli strains to ceftazidime and ceftriaxone (p[0.001), cefuroxime (p[0.01) and to cefepime (p[0.01). The study revealed an alarming pattern of antibiotic resistance in the majority of ICU isolates.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 447
Author(s):  
Barbara Kot ◽  
Agata Grużewska ◽  
Piotr Szweda ◽  
Jolanta Wicha ◽  
Urszula Parulska

The aim of this study was to determine antibiotic resistance patterns and the prevalence of uropathogenes causing urinary tract infections (UTIs) in patients hospitalized in January–June 2020 in central Poland. Antimicrobial susceptibility testing was performed using the disk-diffusion method. Escherichia coli (52.2%), Klebsiella pneumoniae (13.7%), Enterococcus faecalis (9.3%), E. faecium (6.2%), and Proteus mirabilis (4,3%) were most commonly isolated from urine samples. E. coli was significantly more frequent in women (58.6%) (p = 0.0089) and in the age group 0–18, while K. pneumoniae was more frequent in men (24.4%) (p = 0.0119) and in individuals aged 40–60 and >60. Gram-negative species showed resistance to ampicillin. K. pneumoniae were resistant to amoxicillin plus clavulanic acid (75.0%), piperacillin plus tazobactam (76.2%), cefotaxime (76.2%), cefuroxime (81.0%), ciprofloxacin (81.0%), and trimethoprim plus sulphamethoxazole (81.0%). Carbapenems were effective against all E. coli and P. mirabilis. Some K. pneumoniae (13.6%) produced metallo-β-lactamases (MBLs). E. coli (22.6%), K. pneumoniae (81.8%), and all E. faecium were multidrug-resistant (MDR). Some E. coli (26.2%), K. pneumoniae (63.6%), and P. mirabilis (14.3%) isolates produced extended-spectrum beta-lactamases (ESBL). Vancomycin-resistant E. faecium was also found. This study showed that the possibilities of UTIs therapy using available antibiotics become limited due to the increasing number of antibiotic-resistant uropathogens.


Author(s):  
Cláudia A. Ribeiro ◽  
Luke A. Rahman ◽  
Louis G. Holmes ◽  
Ayrianna M. Woody ◽  
Calum M. Webster ◽  
...  

AbstractThe spread of multidrug-resistance in Gram-negative bacterial pathogens presents a major clinical challenge, and new approaches are required to combat these organisms. Nitric oxide (NO) is a well-known antimicrobial that is produced by the immune system in response to infection, and numerous studies have demonstrated that NO is a respiratory inhibitor with both bacteriostatic and bactericidal properties. However, given that loss of aerobic respiratory complexes is known to diminish antibiotic efficacy, it was hypothesised that the potent respiratory inhibitor NO would elicit similar effects. Indeed, the current work demonstrates that pre-exposure to NO-releasers elicits a > tenfold increase in IC50 for gentamicin against pathogenic E. coli (i.e. a huge decrease in lethality). It was therefore hypothesised that hyper-sensitivity to NO may have arisen in bacterial pathogens and that this trait could promote the acquisition of antibiotic-resistance mechanisms through enabling cells to persist in the presence of toxic levels of antibiotic. To test this hypothesis, genomics and microbiological approaches were used to screen a collection of E. coli clinical isolates for antibiotic susceptibility and NO tolerance, although the data did not support a correlation between increased carriage of antibiotic resistance genes and NO tolerance. However, the current work has important implications for how antibiotic susceptibility might be measured in future (i.e. ± NO) and underlines the evolutionary advantage for bacterial pathogens to maintain tolerance to toxic levels of NO.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1530
Author(s):  
Amanuel Balemi ◽  
Balako Gumi ◽  
Kebede Amenu ◽  
Sisay Girma ◽  
Muuz Gebru ◽  
...  

A study was carried out from August 2017 to February 2018 on lactating dairy cows, one-humped dromedary camels, and goats to determine mastitis in the Bule Hora and Dugda Dawa districts of in Southern Ethiopia. Milk samples from 564 udder quarters and udder halves from 171 animals consisting of 60 dairy cows, 51 camels, and 60 goats were tested for mastitis. Sixty-four positive udder milk samples were cultured, and bacterial mastitis pathogens were isolated and identified. The antibiotic resistance of bacterial isolates from milk with mastitis was tested against nine antimicrobials commonly used in the study area. Cow- and quarter-level prevalence of mastitis in dairy cows, camels, and goats was 33.3%, 26.3%, and 25% and 17.6%, 14.5%, and 20%, respectively. In cattle, the prevalence was significantly higher in Dugda Dawa than in Bule Hora. Major bacterial isolates were coagulase-negative Staphylococcus species (39.1%), S. aureus (17.2%), S. hyicus (14.1%), and S. intermedius and Escherichia coli (9.4% each). In camels, udder abnormality and mastitis were significantly higher in late lactation than in early lactation. Mastitis tends to increase with parity in camels. E. coli isolates were highly resistant to spectinomycin, vancomycin, and doxycycline, whereas most S. aureus isolates were multidrug-resistant. Most of the rural and periurban communities in this area consume raw milk, which indicates a high risk of infection with multidrug-resistant bacteria. We recommend a community-focused training program to improve community awareness of the need to boil milk and the risk of raw milk consumption.


Sign in / Sign up

Export Citation Format

Share Document