scholarly journals Evaluation of the Mechanical Properties of Microcapsule-Based Self-Healing Composites

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Liberata Guadagno ◽  
Marialuigia Raimondo ◽  
Umberto Vietri ◽  
Carlo Naddeo ◽  
Anja Stojanovic ◽  
...  

Self-healing materials are beginning to be considered for applications in the field of structural materials. For this reason, in addition to self-healing efficiency, also mechanical properties such as tensile and compressive properties are beginning to become more and more important for this kind of materials. In this paper, three different systems based on epoxy-resins/ethylidene-norbornene (ENB)/Hoveyda-Grubbs 1st-generation (HG1) catalyst are investigated in terms of mechanical properties and healing efficiency. The experimental results show that the mechanical properties of the self-healing systems are mainly determined by the chemical nature of the epoxy matrix. In particular, the replacement of a conventional flexibilizer (Heloxy 71) with a reactive diluent (1,4-butanediol diglycidyl ether) allows obtaining self-healing materials with better mechanical properties and higher thermal stability. An increase in the curing temperature causes an increase in the elastic modulus and a slight reduction of the healing efficiency. These results can constitute the basis to design systems with high regenerative ability and appropriate mechanical performance.

2020 ◽  
Vol 10 (17) ◽  
pp. 5739
Author(s):  
Xenia Tsilimigkra ◽  
Dimitrios Bekas ◽  
Maria Kosarli ◽  
Stavros Tsantzalis ◽  
Alkiviadis Paipetis ◽  
...  

Microcapsule-based carbon fiber reinforced composites were manufactured by wet layup, in order to assess their mechanical properties and determine their healing efficiency. Microcapsules at 10%wt. containing bisphenol-A epoxy, encapsulated in a urea formaldehyde (UF) shell, were employed with Scandium (III) Triflate (Sc (OTf)3) as the catalyst. The investigation was deployed with two main directions. The first monitored changes to the mechanical performance due to the presence of the healing agent within the composite. More precisely, a minor decrease in interlaminar fracture toughness (GIIC) (−14%), flexural strength (−12%) and modulus (−4%) compared to the reference material was reported. The second direction evaluated the healing efficiency. The experimental results showed significant recovery in fracture toughness up to 84% after the healing process, while flexural strength and modulus healing rates reached up to 14% and 23%, respectively. The Acoustic Emission technique was used to support the experimental results by the onsite monitoring.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 773 ◽  
Author(s):  
Yuqing Qian ◽  
Xiaowei An ◽  
Xiaofei Huang ◽  
Xiangqiang Pan ◽  
Jian Zhu ◽  
...  

Dynamic structures containing polymers can behave as thermosets at room temperature while maintaining good mechanical properties, showing good reprocessability, repairability, and recyclability. In this work, alkyl diselenide is effectively used as a dynamic cross-linker for the design of self-healing poly(urea–urethane) elastomers, which show quantitative healing efficiency at room temperature, without the need for any catalysts or external interventions. Due to the combined action of the urea bond and amide bond, the material has better mechanical properties. We also compared the self-healing effect of alkyl diselenide-based polyurethanes and alkyl disulfide-based polyurethanes. The alkyl diselenide has been incorporated into polyurethane networks using a para-substituted amine diphenyl alkyl diselenide. The resulting materials not only exhibit faster self-healing properties than the corresponding disulfide-based materials, but also show the ability to be processed at temperatures as low as 60 °C.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Haoliang Huang ◽  
Guang Ye

In this research, self-healing due to further hydration of unhydrated cement particles is taken as an example for investigating the effects of capsules on the self-healing efficiency and mechanical properties of cementitious materials. The efficiency of supply of water by using capsules as a function of capsule dosages and sizes was determined numerically. By knowing the amount of water supplied via capsules, the efficiency of self-healing due to further hydration of unhydrated cement was quantified. In addition, the impact of capsules on mechanical properties was investigated numerically. The amount of released water increases with the dosage of capsules at different slops as the size of capsules varies. Concerning the best efficiency of self-healing, the optimizing size of capsules is 6.5 mm for capsule dosages of 3%, 5%, and 7%, respectively. Both elastic modulus and tensile strength of cementitious materials decrease with the increase of capsule. The decreasing tendency of tensile strength is larger than that of elastic modulus. However, it was found that the increase of positive effect (the capacity of inducing self-healing) of capsules is larger than that of negative effects (decreasing mechanical properties) when the dosage of capsules increases.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1416 ◽  
Author(s):  
Pejman Heidarian ◽  
Abbas Z. Kouzani ◽  
Akif Kaynak ◽  
Ali Zolfagharian ◽  
Hossein Yousefi

It is an ongoing challenge to fabricate an electroconductive and tough hydrogel with autonomous self-healing and self-recovery (SELF) for wearable strain sensors. Current electroconductive hydrogels often show a trade-off between static crosslinks for mechanical strength and dynamic crosslinks for SELF properties. In this work, a facile procedure was developed to synthesize a dynamic electroconductive hydrogel with excellent SELF and mechanical properties from starch/polyacrylic acid (St/PAA) by simply loading ferric ions (Fe3+) and tannic acid-coated chitin nanofibers (TA-ChNFs) into the hydrogel network. Based on our findings, the highest toughness was observed for the 1 wt.% TA-ChNF-reinforced hydrogel (1.43 MJ/m3), which is 10.5-fold higher than the unreinforced counterpart. Moreover, the 1 wt.% TA-ChNF-reinforced hydrogel showed the highest resistance against crack propagation and a 96.5% healing efficiency after 40 min. Therefore, it was chosen as the optimized hydrogel to pursue the remaining experiments. Due to its unique SELF performance, network stability, superior mechanical, and self-adhesiveness properties, this hydrogel demonstrates potential for applications in self-wearable strain sensors.


Soft Matter ◽  
2020 ◽  
Vol 16 (9) ◽  
pp. 2276-2284 ◽  
Author(s):  
Zichao Wei ◽  
Srinivas Thanneeru ◽  
Elena Margaret Rodriguez ◽  
Gengsheng Weng ◽  
Jie He

Moisture that competes with dipicolylamine to bind Eu dynamically controls the mechanical and optical properties of polymer films, as well as their self-healing efficiency.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 258 ◽  
Author(s):  
Che Nor Aiza Jaafar ◽  
Muhammad Asyraf Muhammad Rizal ◽  
Ismail Zainol

The mechanical performance of silica modified epoxy at various concentration of sodium hydroxide for surface treatment of multi-axial kenaf has been analyzed. Epoxy resin with amine hardener was modified with silica powder at 20 phr and toughened by treated kenaf fiber that immerses in various concentrations of sodium hydroxide (NaOH) ranging from 0% to 9% of weight. The composite was analyzed through differential scanning calorimetry (DSC) to ensure complete curing process. The mechanical properties of the composites were analyzed through flexural test, Charpy impact test and DSC to ensure the complete curing process. DSC analysis results show epoxy sample was completely cured at above 73°C that verifies the curing temperature for preparation for the composite. Hence, 3% NaOH treated composite exhibits the best mechanical properties, with 10.6 kJ/m2 of impact strength, 54.1 MPa of flexural strength and 3.5 GPa of flexural modulus. It is due to the improvement of fiber-matrix compatibility. Analysis by SEM also revealed that a cleaner surface of kenaf fiber treated at 3% NaOH shown cleaner surface, thus, in turn, improve surface interaction between fiber and matrix of the composite. The composites produced in this work has high potential to be used in automotive and domestics appliances.


2006 ◽  
Vol 312 ◽  
pp. 211-216 ◽  
Author(s):  
Shao Yun Fu ◽  
Qin-Yan Pan ◽  
Chuan Jun Huang ◽  
Guo Yang ◽  
Xin-Hou Liu ◽  
...  

Epoxy blend matrices were prepared by incorporating polyurethane-epoxy into diglycidyl ether of bisphenol-F (DGEBF) type epoxy while SiO2/epoxy nanocomposites were made using DGEBF type epoxy and tetraethylorthosilicate (TEOS) via a sol-gel process. The mechanical properties including tensile and impact properties at 77 K of the matrices and nanocomposites were studied. The mechanical properties at room temperature were also given for the purpose of comparison with the cryogenic mechanical properties. The results showed that the incorporation of polyurethane-epoxy with a proper content into DGEBF type epoxy enhanced the mechanical properties at both room and cryogenic temperatures. Addition of SiO2 nanoparticles to DGEBF type epoxy led to significant increase in tensile strength at cryogenic temperature (77 K) while no evident change in tensile strength at room temperature. In addition, a slight enhancement by the addition of 2 wt % silica while a slight reduction by the addition of 4 wt % silica were observed in impact energy.


2016 ◽  
Vol 1813 ◽  
Author(s):  
L. E. Rendon Diaz Miron ◽  
M. E. Lara Magaña

ABSTRACTTensile strength of concrete is limited and therefore is sensitive to crack formation. Steel reinforcement is added to bear the tensile forces; nonetheless, this does not completely omit crack formation. Repair of cracks in concrete is time-consuming and expensive. Self-sealing and self-healing of cracks upon appearance would therefore be a convenient property. We propose a mechanism to obtain self-repair of the concrete by adding soluble silicates (ASS) which will induce a self-sealing and self-healing process catalyzed by natural periods of wet and dry states of the concrete. Self-sealing approaches prevent the ingress of harsh chemical substances which may deteriorate the concrete matrix. This can be achieved by self-healing of concrete cracks (e.g. further cement hydration, calcium carbonate precipitation) and autonomous healing (e.g. further hydration of partially soluble silicates added as healing agents). The autogenous healing efficiency depends on the amount of deposited reaction products (ASS), its solubility (ratio of calcium to sodium silicate), the availability of water, and the crack width (restricted by adding microfibers). The self-sealing efficiency is generally evaluated by measuring the decrease in water permeability and air flow through the crack. The healing efficiency is usually evaluated by testing concrete´s regain in mechanical properties after crack formation; by reloading the cracked and autonomously healed specimen and comparing the obtained mechanical properties with the original ones. Self-sealing and self-healing of concrete gives a broad perspective and new possibilities to make future concrete structures more durable.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4164 ◽  
Author(s):  
Hayeon Kim ◽  
Hyeongmin Son ◽  
Joonho Seo ◽  
H. K. Lee

The present study evaluated the self-healing efficiency and mechanical properties of mortar specimens incorporating a bio-carrier as a self-healing agent. The bio-carrier was produced by immobilizing ureolytic bacteria isolated from seawater in bottom ash, followed by surface coating with cement powder to prevent loss of nutrients during the mixing process. Five types of specimens were prepared with two methods of incorporating bacteria, and were water cured for 28 days. To investigate the healing ratio, the specimens with predefined cracks were treated by applying a wet–dry cycle in three different conditions, i.e., seawater, tap water, and air for 28 days. In addition, a compression test and a mercury intrusion porosimetry analysis of the specimens were performed to evaluate their physico-mechanical properties. The obtained results showed that the specimen incorporating the bio-carrier had higher compressive strength than the specimen incorporating vegetative cells. Furthermore, the highest healing ratio was observed in specimens incorporating the bio-carrier. This phenomenon could be ascribed by the enhanced bacterial viability by the bio-carrier.


2014 ◽  
Vol 23 (4) ◽  
pp. 045001 ◽  
Author(s):  
Liberata Guadagno ◽  
Marialuigia Raimondo ◽  
Carlo Naddeo ◽  
Pasquale Longo ◽  
Annaluisa Mariconda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document