scholarly journals Effect of Sugar Palm Fiber Surface on Interfacial Bonding with Natural Sago Matrix

2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
H. Mardin ◽  
I. N. G. Wardana ◽  
Pratikto ◽  
Wahyono Suprapto ◽  
Kusno Kamil

Palm fibers were immersed in sea water for 1, 2, 3, and 4 weeks prior to application as reinforcement of green biocomposite. Instead of common resin matrix, natural sago starch was applied as the matrix compound. The immersion treatments had significantly affected fibers surface morphology and interfacial bonds of fiber and the matrix as observed through Scanning Electron Microscopy (SEM). The quality of interfacial bonds became higher by additional duration of the sea water immersion. The best interlocking surfaces of fibers and matrix appeared in the composite with 4-week immersed fibers, indicated by disappearance of gaps between fiber and matrix. The morphology of fibers surface interlocking process was clearly seen during the duration of immersion.

2016 ◽  
Vol 724 ◽  
pp. 39-42 ◽  
Author(s):  
H. Mardin ◽  
I.N.G. Wardana ◽  
Kamil Kusno ◽  
Pratikto ◽  
S. Wahyono

Effects of sea water immersion for palm fiber in relation to surface morphology, roughness and bonding between the fiber and sago matrix were observed. Duration of immersion varied in 1, 2, 3 and 4 weeks, and then dried at room temperature for 3 hours continued by oven at 80 °C for 6 hours. SEM and roughness arithmetic tests were applied to see surface morphology, roughness and bonding between fiber and the matrix. Result shows fiber morphology and roughness varies by the duration of immersion. The surface roughness increases as immersion continues along with fiber - matrix bonding improvement. The maximum duration of 4 weeks fiber immersion resulted in the best interlocking of matrix and fibers, as the slits between them disappear.


2011 ◽  
Vol 194-196 ◽  
pp. 1740-1744 ◽  
Author(s):  
Qiu Hong Wang ◽  
Gu Huang

Flax fabric was woven and composites were produced by using the VARI technique with flax fabric as the reinforcement and unsaturated polyester as the matrix. Laminates with two, three and four layers were fabricated respectively. After saturated in the water for different durations of time (7, 14, 21 and 30 days), the tensile strength of the composites was tested. After being soaked in the water for 7, 14 and 21 days, the tensile strength of the two-layer composites was decreased. For the three and four layers specimens, the tensile strength was increased initially with water treatment for 7 and 14 days,and decreased for 21 and 30 days. Scanning electron microscopy (SEM) confirmed that it might be contributed to the thickness of the two-layer composites. The thinner specimen is easier to be damaged by the penetrated moisture owing to the delamination between the fiber and the matrix after water immersion. For the three and four layers specimens, their contradictory tensile strength suggests that the thicker specimen can delay the moisture permeation and is of better water durability.


2017 ◽  
Vol 54 (3) ◽  
pp. 491-494 ◽  
Author(s):  
Marcin Nabialek ◽  
Katarzyna Bloch ◽  
Michal Szota ◽  
Andrei Victor Sandu

The paper presents the results of research for magnetic composites made of metallic filler from alloy Fe65Co10Ni3W2B20 and epoxy resin EPIDIAN 100. The composites studied contained less than 10% of the resin, making them dimagnetoelectrics. The structure of alloys and composites was investigated using X-ray diffraction and scanning electron microscopy and their magnetic properties using a vibration magnetometer. It has been shown that the structure and properties of the composites depend on the chemical composition of the metallic filler. And good link between components, with the proper placement of the filler in the matrix, has an impact on the quality of the composite.


Author(s):  
K. Shibatomi ◽  
T. Yamanoto ◽  
H. Koike

In the observation of a thick specimen by means of a transmission electron microscope, the intensity of electrons passing through the objective lens aperture is greatly reduced. So that the image is almost invisible. In addition to this fact, it have been reported that a chromatic aberration causes the deterioration of the image contrast rather than that of the resolution. The scanning electron microscope is, however, capable of electrically amplifying the signal of the decreasing intensity, and also free from a chromatic aberration so that the deterioration of the image contrast due to the aberration can be prevented. The electrical improvement of the image quality can be carried out by using the fascionating features of the SEM, that is, the amplification of a weak in-put signal forming the image and the descriminating action of the heigh level signal of the background. This paper reports some of the experimental results about the thickness dependence of the observability and quality of the image in the case of the transmission SEM.


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


Author(s):  
Raveesha P ◽  
K. E. Prakash ◽  
B. T. Suresh Babu

The salt water mixes with fresh water and forms brackish water. The brackish water contains some quantity of salt, but not equal to sea water. Salinity determines the geographic distribution of the number of marshes found in estuary. Hence salinity is a very important environmental factor in estuary system. Sand is one major natural aggregate, required in construction industry mainly for the manufacture of concrete. The availability of good river sand is reduced due to salinity. The quality of sand available from estuarine regions is adversely affected due to this reason. It is the responsibility of engineers to check the quality of sand and its strength parameters before using it for any construction purpose. Presence of salt content in natural aggregates or manufactured aggregates is the cause for corrosion in steel. In this study the amount of salinity present in estuary sand was determined. Three different methods were used to determine the salinity in different seasonal variations. The sand sample collected nearer to the sea was found to be high in salinity in all methods.  It can be concluded that care should be taken before we use estuary sand as a construction material due to the presence of salinity.


1998 ◽  
Vol 25 (1) ◽  
pp. 81-86 ◽  
Author(s):  
N Hearn ◽  
J Aiello

Experimental work on prismatic concrete specimens was conducted to determine the relationship between mechanical restraint and the rate of corrosion. The current together with the changes in strain of the confining frame were monitored during the accelerated corrosion tests. The effect of mix design and cracking on the corrosion rates was also investigated. The results show that one-dimensional mechanical restraint retards the corrosion process, as indicated by the reduction in the steel loss. Improved quality of the matrix, with and without cracking, reduces the rate of steel loss. In the inferior quality concrete, the effect of cracking on the corrosion rate is minimal.Key words: corrosion, concrete, repair.


2019 ◽  
Vol 29 (1) ◽  
pp. 1226-1234
Author(s):  
Safa Jida ◽  
Hassan Ouallal ◽  
Brahim Aksasse ◽  
Mohammed Ouanan ◽  
Mohamed El Amraoui ◽  
...  

Abstract This work intends to apprehend and emphasize the contribution of image-processing techniques and computer vision in the treatment of clay-based material known in Meknes region. One of the various characteristics used to describe clay in a qualitative manner is porosity, as it is considered one of the properties that with “kill or cure” effectiveness. For this purpose, we use scanning electron microscopy images, as they are considered the most powerful tool for characterising the quality of the microscopic pore structure of porous materials. We present various existing methods of segmentation, as we are interested only in pore regions. The results show good matching between physical estimation and Voronoi diagram-based porosity estimation.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 251
Author(s):  
Jijia Zhang ◽  
Jihu Wang ◽  
Shaoguo Wen ◽  
Siwei Li ◽  
Yabo Chen ◽  
...  

In this paper, an environmentally friendly waterborne polyurea (WPUA) emulsion and its corresponding coating were prepared, which was characterized by dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and scanning electron microscopy (SEM). To improve the performance of the coating, we doped sulfonated graphene (SG) into WPUA to prepare composite coating (SG/WPUA). SG can be uniformly dispersed in WPUA emulsion and is stable for a long time (28 days) without delamination. The water resistance of the composite coating with 0.3 wt.% SG nanofiller was improved; the water contact angle (WCA) result was SG/WPUA (89°) > WPUA (48.5°), and water absorption result was SG/WPUA (2.90%) < WPUA (9.98%). After water immersion treatment, SEM observation revealed that the SG/WPUA film only generated enlarged microcracks (100 nm) instead of holes (150–400 nm, WPUA film). Polarization curves and electrochemical impedance spectroscopy (EIS) tests show that SG nanosheets with low doping content (0.3 wt.%) are more conducive to the corrosion resistance of WPUA coatings, and the model was established to explain the mechanism.


2017 ◽  
Vol 23 (S1) ◽  
pp. 1266-1267 ◽  
Author(s):  
Barbara Armbruster ◽  
Christopher Booth ◽  
Stuart Searle ◽  
Michael Cable ◽  
Ronald Vane

Sign in / Sign up

Export Citation Format

Share Document