scholarly journals Flavanones from Sedum sarmentosum Bunge Alleviate CCl4-Induced Liver Fibrosis in Rats by Targeting TGF-β1/TβR/Smad Pathway In Turn Inhibiting Epithelial Mesenchymal Transition

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yuancan Lin ◽  
Haiying Luo ◽  
Xiao Wang ◽  
Minxia Zheng ◽  
Qianxing Jin ◽  
...  

Objective. The aim of the study is to evaluate the therapeutic effects of flavanones from Sedum sarmentosum Bunge (FSSB) on CCl4-induced liver fibrosis in rats and the underlying mechanisms of action. Methods. An experimental model of liver fibrosis was established by subcutaneous injection of rats with CCl4 (40% v/v, 3 ml/kg) twice per week for six weeks. FSSB (100, 200, and 400 mg/kg) was intragastrically administered once per day consecutively for five weeks. Results. Our results showed that FSSB significantly attenuated CCl4-induced liver fibrosis as evidenced by reducing the elevated levels of serum biochemical indexes and improving the histological changes, including decreasing the elevation in serum alanine transaminase (ALT), aspartate transaminase (AST), hyaluronic acid (HA), and laminin (LN) level, reducing infiltration of inflammatory cells and collagen fibers in liver tissue. In addition, compared to the model group, FSSB markedly downregulated the protein and mRNA expression of TGF-β1, TGF-β1 receptors I and II (TβRI and TβRII), Smad2, Smad3, and Vimentin in liver tissue, at the mean time upregulating the expression of Smad7 and E-cadherin. Conclusions. The results suggest that FSSB alleviated CCl4-induced liver fibrosis probably through inhibition of TGF-β/TβR/Smad pathway in turn inhibiting epithelial mesenchymal transition.

2020 ◽  
Vol 40 (3) ◽  
Author(s):  
Yihang Yuan ◽  
Jue Wang ◽  
Ming Xu ◽  
Yunpeng Zhang ◽  
Zhiqiang Wang ◽  
...  

Abstract The lymph node metastasis of colorectal cancer (LMN-CRC) seriously threatens the prognosis of patients. Chemotherapy, as the most common treatment, results in severe bone marrow suppression. 20(S)-ginsenoside Rh2 (SGRh2), a major effective constituent of ginseng, has demonstrated therapeutic effects on a variety of diseases, including some tumours. SGRh2 treatment had no effect on other organs. Therefore, ginsenosides are considered a safe and effective antineoplastic drug. However, the effects of SGRh2 on LMN-CRC remain unknown. The present study investigated the potential effect of SGRh2 on LMN-CRC in vitro and in vivo. SW480 and CoLo205 cell lines were treated with SGRh2. SGRh2 dose-dependently decreased CRC cell proliferation by CCK-8, colony formation and Edu assays. The Transwell and scratch assays revealed that SGRh2 inhibits the migratory and invasive abilities of CRC cells in a dose-dependent manner. Furthermore, the results of Western blotting revealed that SGRh2 decreased the expression of matrix metalloproteinase (MMP)-2 and MMP9. In terms of the underlying mechanisms, SGRh2 regulates CRC metastasis by affecting epithelial–mesenchymal transition (EMT), which significantly up-regulated epithelial biomarkers (E-cadherin) and down-regulated mesenchymal biomarkers (N-cadherin and vimentin) and EMT transcriptional factors (Smad-3, Snail-1, and Twist-1). In vivo, SGRh2 significantly inhibited LMN-CRC without affecting other normal organs. Immunohistochemical results showed that SGRh2 treats LMN-CRC by regulating EMT. These results demonstrate that SGRh2 has therapeutic potential for LMN-CRC.


Author(s):  
Shurong Ren ◽  
Qizhen Yue ◽  
Qiubo Wang ◽  
Yanli Zhang ◽  
Bei Zhang

Background: Chronic liver damages from viral infection or alcohol abuse result in liver fibrosis, which is a key pathological event in many types of liver diseases. Discovering new anti-fibrosis agents may provide alternative solutions to manage chronic liver diseases. Methods: We first used CCl4 induced liver fibrosis animal model to evaluate the beneficial effects of Cryptotanshinone (CRY). We next explored target miRNAs regulated by CRY in hepatocytes using microarray. The target miRNA candidate was confirmed with realtime-PCR. We also elucidated the downstream target and pathway directly regulated by the miRNA using luciferase assay, western blotting and Epithelial–Mesenchymal Transition (EMT) markers quantification. Lastly, we confirmed CRY induced expression changes of the target genes in vivo. Results: CRY oral administration markedly alleviated the liver injury caused by CCl4. miRNAs expression profiling and realtime-PCR validation revealed miR-539-3p was directly induced by CRY around 4 folds. The induction of miR-539-3p suppressed SMO expression and antagonized Hedgehog (Hh) pathway. Independently CRY treatment suppressed SMO and inhibited EMT process in hepatocytes. The CRY induced expression changes of both miR-539-3p (~ 2 folds increase) and SMO (~ 60% decrease) in livers were validated in animal model. Conclusion: Our study supported CRY could inhibit liver fibrosis by targeting Hh pathway during EMT. CRY could be used as anti-fibrosis agent candidate for managing chronic liver damages.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jillian Hattaway Luttman ◽  
Ashley Colemon ◽  
Benjamin Mayro ◽  
Ann Marie Pendergast

AbstractThe ABL kinases, ABL1 and ABL2, promote tumor progression and metastasis in various solid tumors. Recent reports have shown that ABL kinases have increased expression and/or activity in solid tumors and that ABL inactivation impairs metastasis. The therapeutic effects of ABL inactivation are due in part to ABL-dependent regulation of diverse cellular processes related to the epithelial to mesenchymal transition and subsequent steps in the metastatic cascade. ABL kinases target multiple signaling pathways required for promoting one or more steps in the metastatic cascade. These findings highlight the potential utility of specific ABL kinase inhibitors as a novel treatment paradigm for patients with advanced metastatic disease.


Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 153
Author(s):  
Sabrina Daniela da Silva ◽  
Fabio Albuquerque Marchi ◽  
Jie Su ◽  
Long Yang ◽  
Ludmila Valverde ◽  
...  

Invasive oral squamous cell carcinoma (OSCC) is often ulcerated and heavily infiltrated by pro-inflammatory cells. We conducted a genome-wide profiling of tissues from OSCC patients (early versus advanced stages) with 10 years follow-up. Co-amplification and co-overexpression of TWIST1, a transcriptional activator of epithelial-mesenchymal-transition (EMT), and colony-stimulating factor-1 (CSF1), a major chemotactic agent for tumor-associated macrophages (TAMs), were observed in metastatic OSCC cases. The overexpression of these markers strongly predicted poor patient survival (log-rank test, p = 0.0035 and p = 0.0219). Protein analysis confirmed the enhanced expression of TWIST1 and CSF1 in metastatic tissues. In preclinical models using OSCC cell lines, macrophages, and an in vivo matrigel plug assay, we demonstrated that TWIST1 gene overexpression induces the activation of CSF1 while TWIST1 gene silencing down-regulates CSF1 preventing OSCC invasion. Furthermore, excessive macrophage activation and polarization was observed in co-culture system involving OSCC cells overexpressing TWIST1. In summary, this study provides insight into the cooperation between TWIST1 transcription factor and CSF1 to promote OSCC invasiveness and opens up the potential therapeutic utility of currently developed antibodies and small molecules targeting cancer-associated macrophages.


2015 ◽  
Vol 33 (6) ◽  
pp. 771-779 ◽  
Author(s):  
Naoshi Nishida ◽  
Masayuki Kitano ◽  
Toshiharu Sakurai ◽  
Masatoshi Kudo

Hepatocellular carcinoma (HCC) is the second leading cause of cancer death worldwide, and prognosis remains unsatisfactory when the disease is diagnosed at an advanced stage. Many molecular targeted agents are being developed for the treatment of advanced HCC; however, the only promising drug to have been developed is sorafenib, which acts as a multi-kinase inhibitor. Unfortunately, a subgroup of HCC is resistant to sorafenib, and the majority of these HCC patients show disease progression even after an initial satisfactory response. To date, a number of studies have examined the underlying mechanisms involved in the response to sorafenib, and trials have been performed to overcome the acquisition of drug resistance. The anti-tumor activity of sorafenib is largely attributed to the blockade of the signals from growth factors, such as vascular endothelial growth factor receptor and platelet-derived growth factor receptor, and the downstream RAF/mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK cascade. The activation of an escape pathway from RAF/MEK/ERK possibly results in chemoresistance. In addition, there are several features of HCCs indicating sorafenib resistance, such as epithelial-mesenchymal transition and positive stem cell markers. Here, we review the recent reports and focus on the mechanism and prediction of chemoresistance to sorafenib in HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Qin Yu ◽  
Jianzhang Wang ◽  
Tiantian Li ◽  
Xinxin Xu ◽  
Xinyue Guo ◽  
...  

Endometrial adenocarcinoma is one of the most prevalent female reproductive tract cancers in the world, and the development of effective treatment is still the main goal of its current research. Epithelial-mesenchymal transition (EMT) plays a significant part in the occurrence and development of epithelial carcinoma, including endometrial adenocarcinoma. Recepteur d’origine nantais (RON) induces EMT and promotes proliferation, migration, and invasion in various epithelial-derived cancers, but its role in endometrial adenocarcinoma is still poorly studied. The purpose of this study is to verify the overexpression of RON in endometrial adenocarcinoma and to explore its specific roles. RON expression in tumor lesions was verified by immunohistochemical staining, HEC-1B cells were used to construct stable cell lines with RON overexpression or knockdown to investigate the effects of RON on the function of endometrial adenocarcinoma cells, and xenotransplantation experiment was carried out in nude mice to explore the effect of RON on the growth of endometrial adenocarcinoma in vivo. This study revealed that RON could promote the proliferation, migration, and invasion of HEC-1B cells and induce EMT, and these effects were regulated through the Smad pathway. RON overexpression could promote growth of endometrial adenocarcinoma cells in nude mice, while its inhibitor BMS777607 could restrict this role. RON played an important role in endometrial adenocarcinoma and had a potential to become a new therapeutic target for endometrial adenocarcinoma.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Xuehua Chen ◽  
Yongquan Huang ◽  
Hui Chen ◽  
Ziman Chen ◽  
Jiaxin Chen ◽  
...  

Abstract Background Insufficient radiofrequency ablation (IRFA) can promote the local recurrence and distal metastasis of residual hepatocellular carcinoma (HCC), which makes clinical treatment extremely challenging. In this study, the malignant transition of residual tumors after IRFA was explored. Then, arsenic-loaded zeolitic imidazolate framework-8 nanoparticles (As@ZIF-8 NPs) were constructed, and their therapeutic effect on residual tumors was studied. Results Our data showed that IRFA can dramatically promote the proliferation, induce the metastasis, activate the epithelial–mesenchymal transition (EMT) and accelerate the angiogenesis of residual tumors. Interestingly, we found, for the first time, that extensive angiogenesis after IRFA can augment the enhanced permeability and retention (EPR) effect and enhance the enrichment of ZIF-8 nanocarriers in residual tumors. Encouraged by this unique finding, we successfully prepared As@ZIF-8 NPs with good biocompatibility and confirmed that they were more effective than free arsenic trioxide (ATO) in sublethal heat-induced cell proliferation suppression, apoptosis induction, cell migration and invasion inhibition, and EMT reversal in vitro. Furthermore, compared with free ATO, As@ZIF-8 NPs exhibited remarkably increased therapeutic effects by repressing residual tumor growth and metastasis in vivo. Conclusions This work provides a new paradigm for the treatment of residual HCC after IRFA. Graphical Abstract


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jiajia Jiang ◽  
Rong Li ◽  
Junyi Wang ◽  
Jie Hou ◽  
Hui Qian ◽  
...  

Circular RNA CDR1as has been demonstrated to participate in various cancer progressions as miRNA sponges. The exact underlying mechanisms of CDR1as on gastric cancer (GC) metastasis remain unknown. Here, we found that CDR1as knockdown facilitated GC cell migration and invasion while its overexpression inhibited the migration and invasion abilities of GC cells in vitro and in vivo. Moreover, epithelial-mesenchymal transition- (EMT-) associated proteins and MMP2 and MMP9 were downregulated by CDR1as. Bioinformatics analysis combined with dual-luciferase reporter gene assays, western blot, RT-qPCR analysis, and functional rescue experiments demonstrated that CDR1as served as a miR-876-5p sponge and upregulated the target gene GNG7 expression to suppress GC metastasis. In summary, our findings indicate that CDR1as suppresses GC metastasis through the CDR1as/miR-876-5p/GNG7 axis.


Planta Medica ◽  
2018 ◽  
Vol 85 (07) ◽  
pp. 563-569 ◽  
Author(s):  
Zhiyong Lei ◽  
Zhijian Cao ◽  
Zaiwang Yang ◽  
Mingzhang Ao ◽  
Wenwen Jin ◽  
...  

AbstractPoor wound healing is a major and global threat to public health. Efforts have been made to better understand the underlying mechanisms and develop effective remedies, though the advancements that have been made are still limited. As there are no effective and generally applicable therapies available for skin injuries and fibrosis, it is urgent to develop new drugs and therapies that facilitate wound healing and effectively improve scars. In this study, GC-MS analysis was performed to identify the chemical composition of rosehip oil. The excisional wound healing model and the carrageenan-induced paw edema method were respectively applied to evaluate the wound healing activity and anti-inflammatory activity of rosehip oil. Hematoxylin and eosin staining was used to assess the pathological changes of sections, and Sirius-red staining was performed to analyze the ratio of collagen I/III in wound tissues. Immunohistological staining for CD68, CCR7 (CD197), CD163, TGF-β1, and α-SMA was applied to determine the macrophage phenotypes transition (M1-to-M2) and demonstrate the scar-improving efficacy of rosehip oil on wound healing. Results showed that rosehip oil significantly promoted wound healing and effectively improved scars. This efficacy might be exerted by accelerating the macrophage phenotypes transition and inhibiting the process of epithelial-mesenchymal transition.


Sign in / Sign up

Export Citation Format

Share Document