scholarly journals Sipjeondaebo-tang Alleviates Oxidative Stress-Mediated Liver Injury through Activation of the CaMKK2-AMPK Signaling Pathway

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Sang Mi Park ◽  
Sung Woo Kim ◽  
Eun Hye Jung ◽  
Hae Li Ko ◽  
Chae Kwang Im ◽  
...  

Sipjeondaebo-tang (SDT) is used frequently as a herbal prescription to treat deficiency syndromes in traditional Korean medicine. We investigated the hepatoprotective effects of SDT against oxidative stress and attempted to clarify the underlying molecular mechanisms. SDT pretreatment reduced arachidonic acid (AA) plus iron-mediated cytotoxicity in a concentration-dependent manner and prevented changes in apoptosis-related protein expression. In addition, SDT pretreatment significantly reduced glutathione depletion, hydrogen peroxide production, and mitochondrial dysfunction via treatment with AA plus iron. SDT increased the phosphorylation of AMP-activated protein kinase (AMPK) in accordance with the phosphorylation of Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2). Experiments using an AMPK chemical inhibitor (Compound C) or CaMKK2 chemical inhibitor (STO-609) suggested that the CaMKK2-AMPK signaling pathway contributes to SDT-mediated protection of mitochondria and cells. Moreover, administration of SDT for 4 consecutive days to mice significantly reduced the alanine aminotransferase and aspartate aminotransferase activities induced by carbon tetrachloride, and the numbers of degenerated hepatocytes, infiltrated inflammatory cells, nitrotyrosine-positive cells, and 4-hydroxynonenal-positive cells in liver tissue. Therefore, SDT protects hepatocytes from oxidative stress via CaMKK2-dependent AMPK activation and has the therapeutic potential to prevent or treat oxidative stress-related liver injury.

2021 ◽  
Vol 22 (17) ◽  
pp. 9407
Author(s):  
Gi Ho Lee ◽  
Chae Yeon Kim ◽  
Chuanfeng Zheng ◽  
Sun Woo Jin ◽  
Ji Yeon Kim ◽  
...  

Rutaecarpine (RUT) is a bioactive alkaloid isolated from the fruit of Evodia rutaecarpa that exerts a cellular protective effect. However, its protective effects on endothelial cells and its mechanism of action are still unclear. In this study, we demonstrated the effects of RUT on nitric oxide (NO) synthesis via endothelial nitric oxide synthase (eNOS) phosphorylation in endothelial cells and the underlying molecular mechanisms. RUT treatment promoted NO generation by increasing eNOS phosphorylation. Additionally, RUT induced an increase in intracellular Ca2+ concentration and phosphorylation of Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ), AMP-activated protein kinase (AMPK), and Ca2+/calmodulin-dependent kinase II (CaMKII). Inhibition of transient receptor potential vanilloid type 1 (TRPV1) attenuated RUT-induced intracellular Ca2+ concentration and phosphorylation of CaMKII, CaMKKβ, AMPK, and eNOS. Treatment with KN-62 (a CaMKII inhibitor), Compound C (an AMPK inhibitor), and STO-609 (a CaMKKβ inhibitor) suppressed RUT-induced eNOS phosphorylation and NO generation. Interestingly, RUT attenuated the expression of ICAM-1 and VCAM-1 induced by TNF-α and inhibited the inflammation-related NF-κB signaling pathway. Taken together, these results suggest that RUT promotes NO synthesis and eNOS phosphorylation via the Ca2+/CaMKII and CaM/CaMKKβ/AMPK signaling pathways through TRPV1. These findings provide evidence that RUT prevents endothelial dysfunction and benefit cardiovascular health.


2019 ◽  
Vol 47 (04) ◽  
pp. 803-822 ◽  
Author(s):  
Hyun Jeong Kwak ◽  
Mi-Young Jeong ◽  
Jae-Young Um ◽  
Jinbong Park

Activation of brown adipose tissue (BAT) has been proposed as a promising target against obesity due to its increased capacity for thermogenesis. In this study, we explored the effect of [Formula: see text]-Lapachone ([Formula: see text]L), a compound obtained from the bark of the lapacho tree, against obesity. In vivo administration of [Formula: see text]L into either high fat diet (HFD)-induced obese C57BL6 mice and genetically obese Lepr[Formula: see text] mice prevented body weight gain, which was associated with tissue weight loss of white adipose tissue (WAT). In addition, [Formula: see text]L elevated thermogenic proteins including uncoupling protein 1 (UCP1) and mitochondrial count in BAT and human adipose tissue-derived mesenchymal stem cells (hAMSCs). [Formula: see text]L also induced AMP-activated protein kinase (AMPK) phosphorylation, subsequent upregulation of acetyl-CoA carboxylase (ACC) and UCP1, and these effects were diminished by AMPK inhibitor compound C, suggesting that AMPK underlies the effects of [Formula: see text]L. Mitogen-activated protein kinase pathways participated in the thermogenesis of [Formula: see text]L, specifically p38, c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2) were activated by [Formula: see text]L treatment in hAMSCs. Additionally, inhibitors of p38/JNK/ERK1/2 abrogated the activity of [Formula: see text]L. Taken together, [Formula: see text]L exerts anti-obese effects by inducing thermogenesis mediated by AMPK signaling pathway, suggesting that [Formula: see text]L may have a potential therapeutic implication of obesity. Taken together, [Formula: see text]L exerts anti-obese effects by not only inducing thermogenesis on brown adipocytes but also inducing the browning of white adipocytes. The anti-obese effect of [Formula: see text]L is mediated by AMPK signaling pathway, suggesting that [Formula: see text]L may have potential therapeutic implication of obesity.


2019 ◽  
Vol 97 (4) ◽  
pp. 397-405 ◽  
Author(s):  
Bing Liu ◽  
Jiangbo Jin ◽  
Ziyu Zhang ◽  
Li Zuo ◽  
Meixiu Jiang ◽  
...  

Shikonin, a naphthoquinone derivative isolated from the root of Lithospermum erythrorhizon, exhibits broad-spectrum antitumor activity via different molecular mechanisms. In this study, we investigated the effect of shikonin on mitochondrial dysfunction in hepatocellular carcinoma (HCC). Our results showed that shikonin inhibited the proliferation, migration, and invasiveness of HCCLM3 cells, and promoted cell apoptosis in a dose-dependent manner. More importantly, shikonin affected mitochondrial function by disrupting mitochondrial membrane potential and oxidative stress (OS) status. Furthermore, shikonin decreased the oxygen consumption rate of HCCLM3 cells, as well as the levels of ATP and metabolites involved in the tricarboxylic acid cycle (TCA cycle). We also investigated the molecular mechanisms underlying the regulation of mitochondrial function by shikonin as an inhibitor of PKM2. Shikonin decreased the expression of PKM2 in the mitochondria and affected other metabolic pathways (AMPK and PGC1α pathways), which aggravated the oxidative stress and nutrient deficiency. Our results indicate a novel role of shikonin in triggering mitochondria dysfunction via the PKM2–AMPK–PGC1α signaling pathway and provide a promising therapeutic approach for the treatment of HCC.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jiaqi Zhang ◽  
Xiaoqiang Liang ◽  
Jiacheng Li ◽  
Hao Yin ◽  
Fangchen Liu ◽  
...  

Overuse of acetaminophen (APAP) is a major cause of drug-induced liver failure at the clinics. Apigenin (API) is a natural flavonoid derived from Matricaria chamomilla. The aim of the present study was to investigate the amelioration function of API in APAP-induced hepatotoxicity both in vitro and in vivo and investigate its potential mechanisms. Analysis results of the activities of serum alanine and aspartate aminotransferases (ALT and AST), malondialdehyde, myeloperoxidase (MPO), and reactive oxygen species (ROS) demonstrated therapeutic effects of API. MTT assay results revealed that API attenuated APAP and its metabolic product, N-acetyl-p-benzoquinone imine (NAPQI) induced cytotoxicity in a dose-dependent manner in human liver cells, L-02 cells. Subsequently, metabolomic results of cells and serum analyses demonstrated an aberrant level of carnitine palmitoyltransferase I (CPT1A). We established that API stimulated CPT1A activity in mice liver tissues and L-02 cells. Molecular docking analyses revealed potential interaction of API with CPT1A. Further investigation of the role of CPT1A in L0-2 cells revealed that API reversed cytotoxicity via the AMP-activated protein kinase (AMPK)/GSK-3β signaling pathway and compound C, which is a selective AMPK inhibitor, inhibited activation of CPT1A induced by API. API was bound to the catalytic region of AMPK as indicated by molecular docking results. In addition, compound C suppressed nuclear translocation of nuclear factor erythroid 2–related factor 2 (NRF2) that is enhanced by API and inhibited the antioxidative function of API. In summary, the study demonstrates that API attenuates APAP-induced hepatotoxicity by activating the AMPK/GSK-3β signaling pathway, which subsequently promotes CPT1A activity and activates the NRF2 antioxidant pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Bin Wang ◽  
Jinyu Li ◽  
Mi Bao ◽  
Runji Chen ◽  
Haiyan Li ◽  
...  

Cardiac microvascular endothelial cell (CMEC) dysfunction is considered as a major contributor to the cardiovascular complications in diabetes mellitus, with oxidative stress caused by hyperglycemia playing a critical role in the progression of CMEC dysfunction. Melatonin is a kind of hormone well known for its antioxidant properties, which has potential protective effects against diabetes mellitus and its complications. However, the role of melatonin on CMEC dysfunction caused by hyperglycemia and its molecular mechanisms underlying these effects has not been clarified. Herein, we investigate the protective effects of melatonin on high glucose- (HG-) evoked oxidative stress and apoptosis in CMECs and underlying mechanisms. Our results revealed that melatonin ameliorated the injury caused by HG in primary cultured rat CMECs. Injury can be accompanied by reduced reactive oxygen species (ROS) and malondialdehyde (MDA) production, and enhanced superoxide dismutase (SOD) activity. Meanwhile, melatonin treatment significantly inhibited HG-induced CMEC apoptosis. Moreover, melatonin increased the activity of the AMPK/SIRT1 signaling axis in CMECs under HG condition, whereas administration of the AMPK inhibitor compound C or SIRT1 silencing partially abrogated the beneficial effects of melatonin. In streptozotocin- (STZ-) evoked diabetic mice, melatonin notably ameliorated cardiac dysfunction and activated the AMPK/SIRT1 signaling. In conclusion, our findings revealed that melatonin attenuates HG-induced CMEC oxidant stress, apoptosis injury, and STZ-induced cardiac dysfunction through regulating the AMPK/SIRT1 signaling pathway.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Bo Kyung Lee ◽  
Yi-Sook Jung

Oxidative stress plays an important role in the pathophysiology of various neurologic disorders.Allium cepaextract (ACE) and their main flavonoid component quercetin (QCT) possess antioxidant activities and protect neurons from oxidative stress. We investigated the underlying molecular mechanisms, particularly those linked to the antioxidant effects of the ACE. Primary cortical neuronal cells derived from mouse embryos were preincubated with ACE or QCT for 30 min and exposed to L-buthionine sulfoximine for 4~24 h. We found that ACE and QCT significantly decreased neuronal death and the ROS increase induced by L-buthionine-S, R-sulfoximine (BSO) in a concentration-dependent manner. Furthermore, ACE and QCT activated extracellular signal-regulated kinase 1/2 (ERK1/2), leading to downregulation of protein kinase C-ε(PKC-ε) in BSO-stimulated neuronal cells. In addition, ACE and QCT decreased the phosphorylated levels of p38 mitogen-activated protein kinase. Our results provide new insight into the protective mechanism of ACE and QCT against oxidative stress in neuronal cells. The results suggest that the inactivation of PKC-εinduced by phosphorylating ERK1/2 is responsible for the neuroprotective effect of ACE and QCT against BSO-induced oxidative stress.


2019 ◽  
Vol 47 (03) ◽  
pp. 541-557 ◽  
Author(s):  
Hsiu-Chung Ou ◽  
Sudhir Pandey ◽  
Meng-Yu Hung ◽  
Su-Hua Huang ◽  
Pei-Tz Hsu ◽  
...  

Oxidative stress has been implicated in the pathogenesis of atherosclerotic cardiovascular diseases. Dietary supplementation of anti-oxidants has been reported to have beneficial effects on the prevention of atherogenic diseases. Luteolin (a natural flavonoid) has been shown to possess antimutagenic, antitumorigenic, anti-oxidant and anti-inflammatory properties. However, the effects and underlying molecular mechanisms of luteolin on cardiovascular systems are poorly explored. Therefore, the aim of the present study was to test whether luteolin could protect against oxidative stress-induced endothelial cell injury and explore the underlying mechanisms. In this study, human umbilical vein endothelial cells (HUVECs) were pre-treated with luteolin followed by hydrogen peroxide induction (H2O2). Our results showed that luteolin protected against H2O2-induced oxidative stress and ameliorated ROS and superoxide generation. In addition, we found that luteolin treatment inhibited the H2O2-induced membrane assembly of NADPH oxidase subunits, which was further confirmed by specifically inhibiting NADPH oxidase using DPI treatment. Furthermore, pAMPK protein expression was enhanced and p-PKC isoforms were significantly down-regulated by luteolin treatment in a dose-dependent manner, and a similar effect was observed upon DPI treatment. However, co-treatment with the specific inhibitor of AMPK (Compound C) restored p-PKC levels suggesting the role of AMPK signaling in regulating p-PKC expression under oxidative stress condition in HUVECs. Finally, we confirmed using siRNAs and specific inhibitor and/or activator of AMPK (AICAR) that luteolin treatment induced AMPK is a key player and regulator of activated expression of PKC isoforms and thereby confers protection against H2O2-induced oxidative stress in HUVECs.


2020 ◽  
Vol 20 (6) ◽  
pp. 734-750
Author(s):  
Wallax A.S. Ferreira ◽  
Rommel R. Burbano ◽  
Claudia do Ó. Pessoa ◽  
Maria L. Harada ◽  
Bárbara do Nascimento Borges ◽  
...  

Background: Pisosterol, a triterpene derived from Pisolithus tinctorius, exhibits potential antitumor activity in various malignancies. However, the molecular mechanisms that mediate the pisosterol-specific effects on glioma cells remain unknown. Objective: This study aimed to evaluate the antitumoral effects of pisosterol on glioma cell lines. Methods: The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and trypan blue exclusion assays were used to evaluate the effect of pisosterol on cell proliferation and viability in glioma cells. The effect of pisosterol on the distribution of the cells in the cell cycle was performed by flow cytometry. The expression and methylation pattern of the promoter region of MYC, ATM, BCL2, BMI1, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, MDM2, p14ARF and TP53 was analyzed by RT-qPCR, western blotting and bisulfite sequencing PCR (BSP-PCR). Results: Here, it has been reported that pisosterol markedly induced G2/M arrest and apoptosis and decreased the cell viability and proliferation potential of glioma cells in a dose-dependent manner by increasing the expression of ATM, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, p14ARF and TP53 and decreasing the expression of MYC, BCL2, BMI1 and MDM2. Pisosterol also triggered both caspase-independent and caspase-dependent apoptotic pathways by regulating the expression of Bcl-2 and activating caspase-3 and p53. Conclusions: It has been, for the first time, confirmed that the ATM/ATR signaling pathway is a critical mechanism for G2/M arrest in pisosterol-induced glioma cell cycle arrest and suggests that this compound might be a promising anticancer candidate for further investigation.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 897
Author(s):  
Wen-Ping Jiang ◽  
Jeng-Shyan Deng ◽  
Shyh-Shyun Huang ◽  
Sheng-Hua Wu ◽  
Chin-Chu Chen ◽  
...  

Liver damage induced by paracetamol overdose is the main cause of acute liver failure worldwide. In order to study the hepatoprotective effect of Sanghuangporus sanghuang mycelium (SS) on paracetamol-induced liver injury, SS was administered orally every day for 6 days in mice before paracetamol treatment. SS decreased serum aminotransferase activities and the lipid profiles, protecting against paracetamol hepatotoxicity in mice. Furthermore, SS inhibited the lipid peroxidation marker malondialdehyde (MDA), hepatic cytochrome P450 2E1 (CYP2E1), and the histopathological changes in the liver and decreased inflammatory activity by inhibiting the production of proinflammatory cytokines in paracetamol-induced acute liver failure. Moreover, SS improved the levels of glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase in the liver. Significantly, SS diminished mitogen-activated protein kinase (MAPK), Toll-like receptor 4 (TLR4), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and the nuclear factor-kappa B (NF-κB) axis, as well as upregulated the Kelch-like ECH-associated protein 1 (Keap1)/erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway, in paracetamol-induced mice. SS mainly inhibited the phosphorylation of the liver kinase B1 (LKB1), Ca2+/calmodulin-dependent kinase kinase β (CaMKKβ), and AMP-activated protein kinase (AMPK) protein expression. Furthermore, the protective effects of SS on paracetamol-induced hepatotoxicity were abolished by compound C, an AMPK inhibitor. In summary, we provide novel molecular evidence that SS protects liver cells from paracetamol-induced hepatotoxicity by inhibiting oxidative stress and inflammation.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Da Tang ◽  
Guang Fu ◽  
Wenbo Li ◽  
Ping Sun ◽  
Patricia A. Loughran ◽  
...  

Abstract Background Hepatic ischemia/reperfusion (I/R) injury can be a major complication following liver surgery contributing to post-operative liver dysfunction. Maresin 1 (MaR1), a pro-resolving lipid mediator, has been shown to suppress I/R injury. However, the mechanisms that account for the protective effects of MaR1 in I/R injury remain unknown. Methods WT (C57BL/6J) mice were subjected to partial hepatic warm ischemia for 60mins followed by reperfusion. Mice were treated with MaR1 (5-20 ng/mouse), Boc2 (Lipoxin A4 receptor antagonist), LY294002 (Akt inhibitor) or corresponding controls just prior to liver I/R or at the beginning of reperfusion. Blood and liver samples were collected at 6 h post-reperfusion. Serum aminotransferase, histopathologic changes, inflammatory cytokines, and oxidative stress were analyzed to evaluate liver injury. Signaling pathways were also investigated in vitro using primary mouse hepatocyte (HC) cultures to identify underlying mechanisms for MaR1 in liver I/R injury. Results MaR1 treatment significantly reduced ALT and AST levels, diminished necrotic areas, suppressed inflammatory responses, attenuated oxidative stress and decreased hepatocyte apoptosis in liver after I/R. Akt signaling was significantly increased in the MaR1-treated liver I/R group compared with controls. The protective effect of MaR1 was abrogated by pretreatment with Boc2, which together with MaR1-induced Akt activation. MaR1-mediated liver protection was reversed by inhibition of Akt. Conclusions MaR1 protects the liver against hepatic I/R injury via an ALXR/Akt signaling pathway. MaR1 may represent a novel therapeutic agent to mitigate the detrimental effects of I/R-induced liver injury.


Sign in / Sign up

Export Citation Format

Share Document