scholarly journals In Vitro Evaluation of Bacterial Adhesion and Bacterial Viability of Streptococcus mutans, Streptococcus sanguinis, and Porphyromonas gingivalis on the Abutment Surface of Titanium and Zirconium Dental Implants

2019 ◽  
Vol 2019 ◽  
pp. 1-5 ◽  
Author(s):  
Ana Stefany Meza-Siccha ◽  
Miguel Angel Aguilar-Luis ◽  
Wilmer Silva-Caso ◽  
Fernando Mazulis ◽  
Carolina Barragan-Salazar ◽  
...  

Objective. To evaluate the in vitro adherence and viability of 3 bacterial species Streptococcus mutans (ATCC 25175), Streptococcus sanguinis (ATCC 10556), and Porphyromonas gingivalis (ATCC 33277) on the surfaces of dental implants of titanium, zirconium, and their respective fixing screws. Methods. Two analysis groups were formed: group 1 with 3 titanium pillars and group 2 with 3 zirconium pillars, each with their respective fixing screws. Each of these groups was included in tubes with bacterial cultures of Streptococcus mutans (ATCC 25175), Streptococcus sanguinis (ATCC 10556), and Porphyromonas gingivalis (ATCC 33277). These samples were incubated at 37°C under anaerobic conditions. Bacterial adherence was assessed by measurement of the change in colony-forming units (CFU), and bacterial viability was evaluated with the colorimetric test of 3-(4,5-dimethylthiazol-2)-2,5 diphenyl tetrazolium bromide (MTT). Results. The bacterial adhesion in the titanium abutments was higher for Streptococcus mutans (190.90 CFU/mL), and the viability was greater in Porphyromonas gingivalis (73.22%). The zirconium abutment group showed the highest adherence with Streptococcus mutans (331.82 CFU/mL) and the highest bacterial viability with the S. sanguinis strain (38.42%). The titanium fixation screws showed the highest adhesion with S. sanguinis (132.5 CFU/mL) compared to the zirconium fixation screws where S. mutans had the highest adhesion (145.5 CFU/mL). The bacterial viability of S. mutans was greater both in the titanium fixation screws and in the zirconium fixation screws 78.04% and 57.38%, respectively. Conclusions. Our results indicate that there is in vitro bacterial adherence and viability in both titanium abutments and zirconium abutments and fixation screws for both. Streptococcus mutans is the microorganism that shows the greatest adherence to the surfaces of both titanium and zirconium and the fixing screws of the latter. On the contrary, bacterial viability is greater on the titanium abutments with P. gingivalis than on the zirconium abutments with S. sanguinis. With respect to the fixation screws, in both cases, the viability of S. mutans was greater with respect to the other bacteria. In general, the titanium abutments showed less adherence but greater bacterial viability.

Diagnóstico ◽  
2020 ◽  
Vol 59 (1) ◽  
pp. 5-11
Author(s):  
María Pareja-Vásquez ◽  
Karina Pardo-Aldave ◽  
Bertha Jurado-Teixeira ◽  
Alfredo Guillen ◽  
Ada Carolina Romero-Coasaca ◽  
...  

Objetivo: Determinar la actividad antibacteriana, in vitro, del extracto etanólico de Caesalpinia spinosa “tara”, sobre cultivos de bacterias de la biopelícula bucal. Material y métodos: Se realizó un estudio experimental in vitro, en el cual se comparó la actividad antibacteriana de un extracto etanólico de C. spinosa y controles (clorhexidina al 0,12% (CHX 0,12%), antiséptico bucal (AB), etanol y agua destilada), frente a cultivos de cepas de Streptococcus mutans (ATCC® 25175), Streptococcus sanguinis (ATCC® 10556), Enterococcus faecalis (ATCC® 29212), Staphylococcus aureus (ATCC® 6538) y Porphyromonas gingivalis (ATCC® 30277). Se utilizó el método de difusión de agar con pocillos de 6 mm de diámetro, en el grupo experimental y controles. Resultados: Se evidenció que el promedio del halo de inhibición formado por la aplicación del extracto etanólico de C. spinosa sobre el S. aureus, fue mucho mayor que el obtenido con la CHX 0,12% o el AB (p<0,000). También se observó, que el promedio de halo de inhibición del extracto de C. spinosa fue mayor que los controles, frente a las cepas de S. sanguinis (p<0,000). Conclusión: La C. spinosa demostró tener actividad antibacteriana in vitro frente a la presencia de S. aureus, S. sanguinis, S. mutans y E. faecalis. No mostró actividad sobre la P. gingivalis.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Fatemeh Ostadhossein ◽  
Parikshit Moitra ◽  
Esra Altun ◽  
Debapriya Dutta ◽  
Dinabandhu Sar ◽  
...  

AbstractDental plaques are biofilms that cause dental caries by demineralization with acidogenic bacteria. These bacteria reside inside a protective sheath which makes any curative treatment challenging. We propose an antibiotic-free strategy to disrupt the biofilm by engineered clustered carbon dot nanoparticles that function in the acidic environment of the biofilms. In vitro and ex vivo studies on the mature biofilms of Streptococcus mutans revealed >90% biofilm inhibition associated with the contact-mediated interaction of nanoparticles with the bacterial membrane, excessive reactive oxygen species generation, and DNA fragmentation. An in vivo examination showed that these nanoparticles could effectively suppress the growth of S. mutans. Importantly, 16S rRNA analysis of the dental microbiota showed that the diversity and richness of bacterial species did not substantially change with nanoparticle treatment. Overall, this study presents a safe and effective approach to decrease the dental biofilm formation without disrupting the ecological balance of the oral cavity.


2019 ◽  
Vol 10 (2) ◽  
pp. 1049-1053 ◽  
Author(s):  
Geetha RV ◽  
John Rozar Raj B ◽  
Lakshmi Thangavelu

To conduct a study regarding the antibacterial activity of essential oils against bacteria causing Caries. Essential oils are distillates of the volatile compounds of a plant’s secondary metabolism and may act as photoprotective agents. Their curative effect has been known since antiquity. It is based on a variety of pharmacological properties which are specific for each plant species. The mouth contains a variety of oral bacteria, but only a few species of bacteria are believed to cause dental caries. Antibacterial activity of the three essential oils, Rosemary oil, Holy basil oil, Thyme oil was screened against Streptococcus mutans, using disc diffusion technique. The rosemary oil was more effective against Streptococcus mutans with a zone of inhibition of 52 mm diameter (at concentration 200 µl), Rosemary oil showed a zone of inhibition of 44 mm diameter and with thyme oil, the zone diameter was 30 mm. The results of this study showed that the essential oils at different concentrations exhibited antibacterial activity against the bacterial species tested.


2020 ◽  
Vol 5 (2) ◽  
pp. 104
Author(s):  
Destri Khusnul Khotimah ◽  
I Wayan Arya Krishnawan Firdaus ◽  
Maharani Laillyza Apriasari

ABSTRACTBackground: Chronic periodontitis is an infectious disease that causes damage on periodontal ligament and alveolar bone. The severity of periodontitis is caused by several types of bacterial species which one of them is Porphyromonas gingivalis bacteria with a prevalence of 85% in oral cavity. The extract of kelakai leaf contained antibacterial in the form of flavonoid, alkaloid, tannin, and steroid. Flavonoid consists of some chemical compounds which is one of them is quercetin. The level of quercetin in kelakai leaf is 503.56 mgQE/g. From some secondary metabolites, kelakai leaf has inhibitory power toward gram negative bacterial, Porphyromonas gingivalis. Objective: This research was intended to know the activity of inhibitory power of kelakai leaf toward Porphyromonas gingivalis bacteria. Method: This research was an experimental research consisted of 5 experimental groups that were group of kelakai leaf extract on the concentrations of 100 mh/ml, 75 mg/ml, 50mg/ml, and 25 mg/ml and the control group (0.2% chlorhexidine). Each treatment was done in 4 repetitions. The test of inhibitory power used diffusion method by measuring the inhibitory zone around the growth of Porphyromonas gingivalis on Mueller Hinton Agar media. The data were analyzed by using One Way Anova 95% and then continued with LSD. Results: Based on the LSD test, it was known that the extract of Kelakai leaf had inhibitor power activity toward Porphyromonas gingivalis. The highest inhibitory zone was on the concentration of 100 mg/ml with inhibitory zone of 14.61 mm. Conclusion: The extract of kelakai leaf had inhibitory power activity toward Porphyromonas gingivalis bacteria in vitro. Keywords: 0.2% chlorhexidine, Diffusion method, Inhibitory power, Stenochlaena palustris extract, Porphyromonas gingivalis.


2020 ◽  
Vol 10 (10) ◽  
pp. 3431
Author(s):  
Shih-Hao Chang ◽  
Hsiang-I Mei ◽  
Chun-Li Lin

This study established an in vitro model mimicking clinical peri-implant intra-bony defects. We investigated the effect of access limitation and the bactericidal effectiveness of erbium-doped yttrium, aluminum and garnet (Er:YAG) laser irradiation in shallow and deep peri-implant defects at different tooth positions. Reverse engineering, computer-aided design (CAD), and 3D-printing techniques were integrated to establish physical peri-implant intra-bony defect models at mandibular central incisor, first premolar, and first molar positions with shallow (2 mm depth) or deep (6 mm depth) defects and with 1.5 mm and 1.8 mm widths at the bottom and crestal portions of the alveolar process, respectively. Three-dimensional printed suites at the corresponding implant sites replaced experimental implant specimens for the investigation of bacterial adhesion in individuals. Dental implants with diameters of 3, 4 and 5 mm were utilized at the mandibular incisor, premolar, and molar positions, respectively. Bacterial adhesion of Gram (–) Escherichia coli on the exposed implant surfaces prior to sterilization was assessed. Sterilization with shallow and deep intra-bony defects was investigated by measuring the reduction of residual viable bacteria on implants after 60 s of irradiation with an Er:YAG laser. The adhesion rate of Gram (–) Escherichia coli on the investigated implant surfaces ranged from 1% to 3% (1.76 ± 1.25%, 2.19   ±   0.75% and 2.66   ±   1.26% for 3, 4, and 5 mm implants, respectively). With shallow peri-implant bony defects, the Er:YAG laser sterilization rates were 99.6 ± 0.5%, 99.3   ±   0.41% and 93.8 ± 7.65% at mandibular incisor, premolar, and molar positions, respectively. Similarly, sterilization rates in deep peri-implant defects were 99 ± 1.35%, 99.1 ± 0.98% and 97.14 ± 2.57%, respectively. A 3D-printed model with replaceable implant specimens mimicking human peri-implant intra-bony defects was established and tested in vitro. This investigation demonstrated effective sterilization using Er:YAG laser irradiation in both shallow and deep peri-implant intra-bony defects at different positions and diameters of dental implants.


2008 ◽  
Vol 190 (13) ◽  
pp. 4632-4640 ◽  
Author(s):  
Jens Kreth ◽  
Yongshu Zhang ◽  
Mark C. Herzberg

ABSTRACT Biofilms are polymicrobial, with diverse bacterial species competing for limited space and nutrients. Under healthy conditions, the different species in biofilms maintain an ecological balance. This balance can be disturbed by environmental factors and interspecies interactions. These perturbations can enable dominant growth of certain species, leading to disease. To model clinically relevant interspecies antagonism, we studied three well-characterized and closely related oral species, Streptococcus gordonii, Streptococcus sanguinis, and cariogenic Streptococcus mutans. S. sanguinis and S. gordonii used oxygen availability and the differential production of hydrogen peroxide (H2O2) to compete effectively against S. mutans. Interspecies antagonism was influenced by glucose with reduced production of H2O2. Furthermore, aerobic conditions stimulated the competence system and the expression of the bacteriocin mutacin IV of S. mutans, as well as the H2O2-dependent release of heterologous DNA from mixed cultures of S. sanguinis and S. gordonii. These data provide new insights into ecological factors that determine the outcome of competition between pioneer colonizing oral streptococci and the survival mechanisms of S. mutans in the oral biofilm.


2003 ◽  
Vol 47 (10) ◽  
pp. 3349-3351 ◽  
Author(s):  
Giuseppantonio Maisetta ◽  
Giovanna Batoni ◽  
Semih Esin ◽  
Filippo Luperini ◽  
Manuela Pardini ◽  
...  

ABSTRACT The in vitro activities of human β-defensin 3 (hBD-3) alone or combined with lysozyme, metronidazole, amoxicillin, and chlorhexidine were investigated with the oral bacteria Streptococcus mutans, Streptococcus sanguinis, Streptococcus sobrinus, Lactobacillus acidophilus, Actinobacillus actinomycetemcomitans, and Porphyromonas gingivalis. hBD-3 showed bactericidal activity against all of the bacterial species tested. The bactericidal effect was enhanced when the peptide was used in combination with the antimicrobial agents mentioned above.


Author(s):  
Krishnakanth Jaju ◽  
Iffat Nasim

Streptococcus mutans (S. mutans) is one of the cariogenic microorganisms. The restorative materials which harbor a biofilm with high number of S. mutans can accelerate the occurrence of dental caries. The purpose of this study was to evaluate the adherence of S. mutans to nanoceramic and nanohybrid resin composites. Fifteen discs of each material (Nanohybrid resin composite, Nanoceramic resin composite) were prepared, polished, and sterilized in a gamma radiation chamber. Specimens were exposed to the S. mutans bacterial suspension (0.5 McFarland) and were incubated for 4 hours. Specimens were rinsed and sonicated in normal saline, 10 μl of the obtained suspension was cultured in a sterile blood agar medium. After 24 hours, the number of colony forming units of S. mutans was counted. A sterility test control was considered for each group of materials. The data was analyzed by Independent t test. The means and standard deviations of the logarithmic counts of the colonies on the surfaces of nanohybrid resin composites and nanoceramic resin composite were equal to 3.2±0.87 and 2.8±0.324 respectively. Ceram X Universal did not show any significant difference in the bacterial adhesion compared to Filtek Z350XT. Both composites showed similar behaviour in terms of S. mutans colonization in a simple biofilm formation model.


2020 ◽  
Vol 1 (2) ◽  
pp. 87-99 ◽  
Author(s):  
Christofora Hanny Wijaya ◽  
Bernadeta RE Sari ◽  
Boy M Bachtiar

Streptococcus mutans were competing Streptococcus sanguinis in biofilm formation. As pioneer colonizer, S. sanguinis were able to control S. mutans growth. This study was aimed to explore the ability of sucrose and non-sucrose cajuputs candies (SCC and NSCC) in maintaining the antagonistic relationship between the indigenous oral flora when they grew as dual-species biofilms (S. sanguinis and S. mutans). The flavored candies (SCC and NSCC) contained cajuput and peppermint oils as the flavor which the volatile compounds had been identified. The unflavored candies were made similar to the flavored candy but excluding the flavor. The flavored candies, unflavored candies, and the control were exposed in vitro to the biofilms. The biofilms were examined for biofilm inhibition capacity, DNA amount, and the expression level of spxB mRNA. The biofilm inhibition by flavored candies were higher than the unflavored ones and were significantly different compared to the control. The flavored candies managed to decrease the total DNA amount in the biofilm, but unflavored samples did not. The qPCR assays showed that the exposure of candies did not alter the proportion of S. sanguinis DNA to S. mutans DNA in the biofilms. Meanwhile, spxB mRNA expression indicated the ability of S.sanguinis to control S. mutans growth.


Author(s):  
Derivaldo Moura Gois Filho ◽  
Vanessa Tavares de Gois-Santos ◽  
Ronaldo Santos Silva ◽  
Antônio Carlos Marqueti ◽  
Arthur Rodriguez Gonzalez Cortes ◽  
...  

Introduction: The adaptation of prostheses fixed over implants involves biomechanical aspects that are directly associated with treatment success. Objective: The aim of this in vitro study was to evaluate the presence of microgaps in the abutment/inner connection interface of cone morse dental implants. Materials and methods: Two groups of implants were analyzed. The first group (n = 16) employed single-manufacturer dental implants and abutments, whereas the second group (n = 16) combined multi-manufacturer materials. The sets were analyzed through scanning electron mi­croscopy, wherein microgaps between the implant connection and the abutment were observed. Results: Group 1 had an average microgap of 5.69 μm (SD ± 8.46 μm). Group 2 had an average microgap of 1.24 μm (SD ± 0.44 μm). A significant difference was found between the two groups (p = 0.002). Conclusion: Within the limitations of this study, results suggest that the group formed by multi-manufacturer implants and abutments (group 2) had smaller microgap values, and, therefore, a higher in vitro adaptation of components. DESCRIPTORS | Dental Implants; Dental Abutments; Scanning Electron Microscopy.


Sign in / Sign up

Export Citation Format

Share Document