scholarly journals BASP1 Suppresses Cell Growth and Metastasis through Inhibiting Wnt/β-Catenin Pathway in Gastric Cancer

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Li Li ◽  
Qinghua Meng ◽  
Guoying Li ◽  
Limei Zhao

Objective. Our research is designed to explore the function of brain acid soluble protein 1 (BASP1) in the progression of gastric cancer (GC) and its underlying molecular mechanisms. Methods. In this study, the expression of BASP1 was detected by quantitative real-time polymerase chain reaction (qRT-PCR) in both GC tissue and GC cells. The cell cloning, proliferation, apoptosis, migration, and invasion potential of AGS and HGC-27 cells were, respectively, determined using colony formation assay, 5-ethynyl-20-deoxyuridine (EDU) assay, flow cytometry, and Transwell assay. The protein expressions of Bax, caspase-3, Bcl-2, matrix metalloproteinases 2 (MMP-2), MMP-9, Wilms tumor 1 (WT1), Wnt, and β-catenin in AGS and HGC-27 cells were measured by western blot. In addition, the mRNA expressions of WT1, Wnt, and β-catenin in AGS and HGC-27 cells were detected by qRT-PCR. Results. BASP1 expression was significantly downregulated in both GC tissue and GC cells. BASP1 overexpression markedly repressed proliferation, migration, and invasion and facilitated apoptosis in AGS and HGC-27 cells. In addition, BASP1 overexpression notably promoted the protein expression of Bax and caspase-3 in AGS and HGC-27 cells and inhibited the expression of Bcl-2, MMP-2, and MMP-9. Moreover, BASP1 overexpression significantly inhibited the mRNA and protein expression of WT1, Wnt, and β-catenin in AGS and HGC-27 cells. Conclusion. BASP1 could significantly suppress cell proliferation, migration, and invasion and promote apoptosis through inhibiting the activation of the Wnt/β-catenin pathway in GC.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ruichuang Yang ◽  
Jianxia Wen ◽  
Tao Yang ◽  
Chunmei Dai ◽  
Yanling Zhao

Aims. In this study, the pharmacological effects and potential molecular mechanisms of evodiamine in treating gastric cancer (GC) were investigated. Methods. GC cells lines of AGS and BGC-823 were treated with evodiamine at various concentrations for different times (24, 48, and 72 h). Inhibition of the proliferation of AGS and BGC-823 cells was assessed using a CCK-8 assay. The morphology of gastric cancer cells was detected by high-content screening (HCS). The apoptosis-inducing effect of evodiamine on AGS and BGC-823 cells was detected by flow cytometric analysis. Cell migration and invasion were detected by Transwell assay. The relative mRNA and protein expression levels of PTEN-mediated EGF/PI3K signaling pathways were investigated via RT-qPCR or western blotting, respectively. Results. Evodiamine substantially inhibited AGS and BGC-823 cells proliferation in a dose- and time-dependent manner. Flow cytometric analysis revealed that evodiamine could induce apoptosis of AGS and BGC-823 cells in a dose-dependent manner. In addition, evodiamine inhibited AGS and BGC-823 cell migration and invasion. Mechanistically, the results demonstrated that evodiamine promoted the relative mRNA and protein expression of PTEN and decreased expression of EGF, EGFR, PI3K, AKT, p-AKT, and mTOR. Most importantly, evodiamine could effectively increase the mRNA and protein expression of PTEN and decrease the protein expression of EGF/PI3K pathway, indicating that evodiamine downregulated EGF/PI3K through the activation of PTEN pathway. Conclusion. Evodiamine inhibited the directional migration and invasion of GC cells by inhibiting PTEN-mediated EGF/PI3K signaling pathway. These findings revealed that evodiamine might serve as a potential candidate for the treatment or prevention of GC.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shuang Wang ◽  
Yuanyuan Cheng ◽  
Pingping Yang ◽  
Guang Qin

Purpose. This study was aimed at exploring the effect of long noncoding RNA LINC00324 (LINC00324) on gastric cancer (GC) and the potential molecular mechanisms. Methods. The expression of LINC00324 and miR-3200-5p in GC tissues and cells was detected by qRT-PCR. LINC00324 was silenced in GC cells by transfection of si-LINC00324. Then, the proliferation, migration, and invasion of GC cells were analyzed by MTT, wound healing, and transwell assays, respectively. The interactions between LINC00324 and miR-3200-5p and between miR-3200-5p and BCAT1 were determined by a dual-luciferase reporter and/or RNA pull-down assay. Results. The expression of LINC00324 was upregulated in GC cells and tissues, but miR-3200-5p was downregulated. Silencing of LINC00324 inhibited the proliferation, migration, and invasion of GC cells. LINC00324 directly targeted miR-3200-5p, and miR-3200-5p directly targeted BCAT1. si-LINC00324 negatively regulated BCAT1 expression via binding to miR-3200-5p. Furthermore, silencing of LINC00324 reversed the promoting effects of BCAT1 on the proliferation, migration, and invasion of GC cells. Conclusion. Silencing of LINC00324 inhibited the proliferation, migration, and invasion of GC cells through regulating the miR-3200-5p/BCAT1 axis.


2018 ◽  
Vol 18 (7) ◽  
pp. 1025-1031
Author(s):  
Cheng Luo ◽  
Di Wu ◽  
Meiling Chen ◽  
Wenhua Miao ◽  
Changfeng Xue ◽  
...  

Background: Different saponins from herbs have been used as tonic or functional foods, and for treatment of various diseases including cancers. Although clinical data has supported the function of these saponins, their underlying molecular mechanisms have not been well defined. Methods: With the simulated hypoxia created by 8 hours of Cu++ exposure and following 24 hour incubation with different concentration of saponins in HepG2 cells for MTT assay, migration and invasion assays, and for RT-PCR, and with each group of cells for immunofluorescence observation by confocal microscopy. Results: ZC-4 had the highest rate of inhibition of cell proliferation by MTT assay, and the highest inhibition of migration rate by in vitro scratch assay, while ZC-3 had the highest inhibition of invasion ratio by transwell assay. Under the same simulated hypoxia, the molecular mechanism of saponin function was conducted by measuring the gene expression of Hypoxia Inducible Factor (HIF)-1α through RT-PCR, in which ZC-3 showed a potent inhibition of gene HIF-1α. For the protein expression by immunofluorescence staining with confocal microscopy, HIF-1α was also inhibited by saponins, with the most potent one being ZC-4 after eight hours’ relatively hypoxia incubation. Conclusion: Saponins ZC-4 and ZC-3 have the potential to reduce HepG2 cell proliferation, migration and invasion caused by hypoxia through effectively inhibiting the gene and protein expression of HIF-1α directly and as antioxidant indirectly


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
You Shuai ◽  
Zhonghua Ma ◽  
Weitao Liu ◽  
Tao Yu ◽  
Changsheng Yan ◽  
...  

Abstract Background Gastric cancer (GC) is the third leading cause of cancer-related mortality globally. Long noncoding RNAs (lncRNAs) are dysregulated in obvious malignancies including GC and exploring the regulatory mechanisms underlying their expression is an attractive research area. However, these molecular mechanisms require further clarification, especially upstream mechanisms. Methods LncRNA MNX1-AS1 expression in GC tissue samples was investigated via microarray analysis and further determined in a cohort of GC tissues via quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. Cell proliferation and flow cytometry assays were performed to confirm the roles of MNX1-AS1 in GC proliferation, cell cycle regulation, and apoptosis. The influence of MNX1-AS1 on GC cell migration and invasion was explored with Transwell assays. A xenograft tumour model was established to verify the effects of MNX1-AS1 on in vivo tumourigenesis. The TEAD4-involved upstream regulatory mechanism of MNX1-AS1 was explored through ChIP and luciferase reporter assays. The mechanistic model of MNX1-AS1 in regulating gene expression was further detected by subcellular fractionation, FISH, RIP, ChIP and luciferase reporter assays. Results It was found that MNX1-AS1 displayed obvious upregulation in GC tissue samples and cell lines, and ectopic expression of MNX1-AS1 predicted poor clinical outcomes for patients with GC. Overexpressed MNX1-AS1 expression promoted proliferation, migration and invasion of GC cells markedly, whereas decreased MNX1-AS1 expression elicited the opposite effects. Consistent with the in vitro results, MNX1-AS1 depletion effectively inhibited the growth of xenograft tumour in vivo. Mechanistically, TEAD4 directly bound the promoter region of MNX1-AS1 and stimulated the transcription of MNX1-AS1. Furthermore, MNX1-AS1 can sponge miR-6785-5p to upregulate the expression of BCL2 in GC cells. Meanwhile, MNX1-AS1 suppressed the transcription of BTG2 by recruiting polycomb repressive complex 2 to BTG2 promoter regions. Conclusions Our findings demonstrate that MNX1-AS1 may be able to serve as a prognostic indicator in GC patients and that TEAD4-activatd MNX1-AS1 can promote GC progression through EZH2/BTG2 and miR-6785-5p/BCL2 axes, implicating it as a novel and potent target for the treatment of GC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Safia Akhtar ◽  
Silas A. Culver ◽  
Helmy M. Siragy

AbstractRecent studies suggested that renal gluconeogenesis is substantially stimulated in the kidney in presence of obesity. However, the mechanisms responsible for such stimulation are not well understood. Recently, our laboratory demonstrated that mice fed high fat diet (HFD) exhibited increase in renal Atp6ap2 [also known as (Pro)renin receptor] expression. We hypothesized that HFD upregulates renal gluconeogenesis via Atp6ap2-PGC-1α and AKT pathway. Using real-time polymerase chain reaction, western blot analysis and immunostaining, we evaluated renal expression of the Atp6ap2 and renal gluconeogenic enzymes, PEPCK and G6Pase, in wild type and inducible nephron specific Atp6ap2 knockout mice fed normal diet (ND, 12 kcal% fat) or a high-fat diet (HFD, 45 kcal% fat) for 8 weeks. Compared with ND, HFD mice had significantly higher body weight (23%) (P < 0.05), renal mRNA and protein expression of Atp6ap2 (39 and 35%), PEPCK (44 and 125%) and G6Pase (39 and 44%) respectively. In addition, compared to ND, HFD mice had increased renal protein expression of PGC-1α by 32% (P < 0.05) and downregulated AKT by 33% (P < 0.05) respectively in renal cortex. Atp6ap2-KO abrogated these changes in the mice fed HFD. In conclusion, we identified novel regulation of renal gluconeogenesis by Atp6ap2 in response to high fat diet via PGC1-α/AKT-1 pathway.


2021 ◽  
pp. 1-13
Author(s):  
Jing Shen ◽  
Qiang Shu

<b><i>Purpose:</i></b> Compelling evidence has unveiled the importance of long noncoding RNAs (lncRNAs) in malignant behavior of Wilms’ tumor (WT). Hereon, we intend to assess the function and associated molecular mechanism of lncRNA maternally expressed gene 8 (MEG8) in WT cells. <b><i>Methods:</i></b> Expression levels of MEG8, miR-23a-3p, and CT10 regulator of kinase (CRK) were determined by quantitative real-time polymerase chain reaction. Cell viability was assessed by MTT assay. Besides, wound healing assay and transwell assay were applied to examine abilities of cell migration and invasion, respectively. Dual-luciferase reporter assay was employed to test the interplay among MEG8, miR-23a-3p, and CRK. Western blot was used to detect relative protein expression of CRK. <b><i>Results:</i></b> MEG8 and CRK expression was elevated, while miR-23a-3p expression was decreased in WT tissues and cells. The histologic type, lymphatic metastasis, and National Wilms Tumor Study (NWTS) stage were associated with the expression of MEG8, miR-23a-3p, and CRK in WT patients. MEG8 knockdown or miR-23a-3p overexpression restrained WT cells in cell viability, migration, and invasiveness in vitro. As to mechanism exploration, MEG8 could directly bind to miR-23a-3p and then miR-23a-3p targeted CRK. MEG8 was inversely correlated with miR-23a-3p and positively correlated with CRK in WT tissues. Meantime, miR-23a-3p was inversely correlated with CRK in WT tissues. Additionally, MEG8 knockdown-mediated suppressive impacts on cell viability, migration, and invasiveness were reversed by overexpression of CRK or repression of miR-23a-3p in WT cells. <b><i>Conclusions:</i></b> The cell viability, migration, and invasiveness of WT cells were repressed by MEG8 knockdown via targeting the miR-23a-3p/CRK axis.


2018 ◽  
Vol 105 (1) ◽  
pp. 63-75
Author(s):  
Jae Chang Lee ◽  
Sung Ae Koh ◽  
Kyung Hee Lee ◽  
Jae-Ryong Kim

Introduction: Bcl2-associated athanogene 3 (BAG3) is elevated in several types of cancers. However, the role of BAG3 in progression of gastric cancer is unknown. Therefore, the present study aims to find out the role of BAG3 in hepatocyte growth factor (HGF)–mediated tumor progression and the molecular mechanisms by which HGF regulates BAG3 expression. Methods: BAG3 mRNA and protein were measured using reverse transcription polymerase chain reaction and Western blot in the 2 human gastric cancer cell lines, NUGC3 and MKN28, treated with or without HGF. The effects of BAG3 knockdown on cell proliferation, cell invasion, and apoptosis were analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the in vitro 2-chamber invasion assay, and flow cytometry in BAG3 short hairpin RNA (shRNA)–transfected cells and control cells. The signaling pathways involved in BAG3 that are regulated by HGF were analyzed. The chromatin immunoprecipitation assay was used to determine binding of Egr1 to the BAG3 promoter. Results: BAG3 mRNA and protein levels were increased following treatment with HGF. HGF-mediated BAG3 upregulation increased cell proliferation and cell invasion; however, it decreased apoptosis. HGF-mediated BAG3 upregulation is regulated by an ERK and Egr1-dependent pathway. BAG3 may have an important role in HGF-mediated cell proliferation and metastasis in gastric cancer through an ERK and Egr1-dependent pathway. Conclusion: This pathway may provide novel therapeutic targets and provide information for further identification of other targets of therapeutic significance in gastric cancer.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yanping Li ◽  
Shanshan Wang ◽  
Xiaoyuan Zhang ◽  
Rui Yang ◽  
Xiaonan Wei ◽  
...  

It was proven that PGK1 plays a vital role in the proliferation, migration, and invasion of human breast cancer. However, the correlation of PGK1 mRNA and protein expression with clinicopathologic characteristics and prognostic values according to various kinds of breast cancer patient classifications remains unsufficient. Here, we analyzed data from the Oncomine database, Breast cancer Gene-Expression Miner v4.5, TNMplot, MuTarget, PrognoScan database, and clinical bioinformatics to investigate PGK1 expression distribution and prognostic value in breast cancer patients. Our study revealed that the mRNA and protein expression levels of PGK1 were up-regulated in various clinicopathologic types of breast cancer. Moreover, the expression of PGK1 was correlated with mutations of common tumor suppressor genes TP53 and CDH1. In addition, we found that high mRNA level of PGK1 was significantly associated with poor OS, RFS, and DMFS. Notably, Cox regressionanalysis showed that PGK1 could be used as an independent prognostic marker. In summary, the aforementioned findings suggested that PGK1 might be not only explored as a potential biomarker, but also combined with TP53/CDH1 for chemotherapy in breast cancer.


2021 ◽  
Vol 39 (3_suppl) ◽  
pp. 241-241
Author(s):  
Jugang Wu ◽  
Jiwei Yu ◽  
Yan Gu

241 Background: Aberrant epigenetic modification induces oncogenes expression and promotes cancer development. The histone lysine methyltransferase SETD1A, which specifically methylates H3K4, is involved in tumor growth and metastasis, and its ectopic expression has been detected in aggressive malignancies. Our previous study had reported that SETD1A promoted gastric cancer (GC) proliferation and tumorigenesis. However, the function and molecular mechanisms of SETD1A in GC metastasis remain to be elucidated. Methods: Transwell migration and invasion assay were performed to determine GC cell migration and invasion. Lung metastasis assay was used to detect GC cell metastasis. Western Blot and Real-time qPCR were performed to measure the protein and mRNA levels, respectively. ChIP assay was performed to investigate the methylation of H3K4. The correlation between SETD1A and EMT associated key genes in GC were performed by bioinformatic analysis. Results: In this study, we found that overexpression of SETD1A promotes GC migration and invasion, whereas knockdown of SETD1A suppressed GC migration, invasion and metastasis. Furthermore, knockdown of SETD1A suppressed GC epithelial-mesenchymal transition (EMT) by increasing the expression of epithelial marker E-cadherin, and decreasing the expression of mesenchymal markers, including N-cadherin, Fibronectin and Vimentin. Mechanistically, knockdown of SETD1A reduced the EMT key transcriptional factors snail. SETD1A was recruited to the promoter of snail, where SETD1A could methylate H3K4. However, knockdown of SETD1A decreased the methylation of H3K4 on snail promoter. Rescue of snail restored SETD1A knockdown-induced GC migration and invasion inhibition. In addition, linear correlation between SETD1A and several key EMT genes, including E-cadherin, Fibronectin and snail, in GC specimens obtained from TCGA dataset. Conclusions: In summary, our data reveals that SETD1A mediated EMT process and induced metastasis through epigenetic reprogramming of snail.


2020 ◽  
Author(s):  
yutao guan ◽  
Fu-bin Zhang ◽  
Yan-qing Huang ◽  
Ling-ling Zhou ◽  
Wei-feng Li ◽  
...  

Abstract Background: Endometriosis is a progressive and benign disease characterized by the presence of endometrial glands and stroma tissue outside of the uterine cavity. Though endometriosis is a benign disease, it has the characteristics of malignant tumour growth. Abnormal expression of T-cadherin is involved in the occurrence and progression of many tumours. We aimed to investigate whether T-cadherin promotes the migration and invasion of endometriosis cells through the PI3K/AKT/mTOR signaling pathway. Methods: Ectopic and eutopic endometrial samples from 62 female patients with endometriosis and endometrial samples from 51 female patients without endometriosis were collected. The immortalized endometrial stromal cell line hEM15A was cultured. Real-time RT-PCR, immunohistochemistry and Western blot were used to detect the expression of T-cadherin, phospho-PI3K/Akt/mTOR and matrix metalloproteinase 2 (MMP-2). Transfection technology was employed to upregulate T-cadherin expression. The migration and invasion abilities of hEM15A cells were measured by the transwell assay with uncoated or Matrigel-coated membranes. Results: The mRNA and protein expression of T-cadherin was significantly decresed in the ectopic tissues of the patients with endometriosis, while the mRNA and protein expression in the eutopic endometrial tissues of the same patients did not significantly differ from that in the patients without endometriosis. The migration and invasion ability and phospho-PI3K/Akt/mTOR and MMP-2 expression levels were decreased in hEM15A cells with high T-cadherin expression compared with the corresponding parameters in the normal control group. However, everolimus and BEZ235 inhibited cell migration and invasion in cells with low T-cadherin expression, and weakened overexpression of T‑cadherin significantly attenuated MMP-2 protein expression. Conclusion: Loss of T-cadherin promotes cell migration and invasion in endometriosis via the PI3K/AKT/mTOR signalling pathway.


Sign in / Sign up

Export Citation Format

Share Document