scholarly journals Classical Dichotomy of Macrophages and Alternative Activation Models Proposed with Technological Progress

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yali Wei ◽  
Mengxi Wang ◽  
Yuwen Ma ◽  
Zhenni Que ◽  
Dengbo Yao

Macrophages are important immune cells that participate in the regulation of inflammation in implant dentistry, and their activation/polarization state is considered to be the basis for their functions. The classic dichotomy activation model is commonly accepted, however, due to the discovery of macrophage heterogeneity and more functional and iconic exploration at different technologies; some studies have discovered the shortcomings of the dichotomy model and have put forward the concept of alternative activation models through the application of advanced technologies such as cytometry by time-of-flight (CyTOF), single-cell RNA-seq (scRNA-seq), and hyperspectral image (HSI). These alternative models have great potential to help macrophages divide phenotypes and functional genes.

Author(s):  
Gianni Monaco ◽  
Bernett Lee ◽  
Weili Xu ◽  
Seri Mustafah ◽  
You Yi Hwang ◽  
...  

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Olga Berillo ◽  
Kugeng Huo ◽  
Julio C Fraulob-Aquino ◽  
Chantal Richer ◽  
Na Li ◽  
...  

Background: Hypertension (HTN) is associated with subclinical target organ damage including cardiac, vascular and kidney injury. The immune system plays a role in hypertension and target organ damage. Activation of T cells has been reported among peripheral blood mononuclear cells (PBMCs) of patients with HTN. MicroRNAs (miRNAs) are crucial post-transcriptional regulators of immune cells. Whether miRNAs play a role in the activation of immune cells in hypertension complicated by target organ damage in humans remains unknown. We aimed to address this question by identifying differentially expressed (DE) miRNAs and their mRNA targets in PBMCs of patients with hypertension complicated or not with metabolic syndrome (MetS) or chronic kidney disease (CKD). Methods: Normotensive subjects and patients with hypertension (HTN) associated or not with at least 2 other features of MetS or CKD were studied (n=15-16). PBMCs were isolated from blood, RNA extracted for small and total RNA sequencing (RNA-seq) using Illumina HiSeq-2500 and data were analyzed using a systems biology approach. MiRDeep2 was used for novel miRNAs prediction, miRNA annotation and counting. TargetScan 7.07 was used to predict DE miRNA targets with weighted context score percentile >50%. DE genes miRNAs and mRNAs were identified with fold change (FC) >1.5 and P <0.005. DE miRNAs with FC>2 and mean read count number (MRCM) >500, and with predicted targets with MRCM>300 were validated by reverse transcription-quantitative PCR (RT-qPCR). Results: DE miRNAs, mRNAs and non-coding RNAs were identified in HTN (22, 19 and 0), MetS (57, 401 and 11) and CKD (6, 26 and 2) compared to NTN. TargetScan predicted that 7 miRNAs target 3 mRNAs in NTN, 57 miRNAs target 55 mRNAs in MetS and 3 miRNAs target 2 mRNAs in CKD. DE miR-409-5p (FC: 0.54±0.10 vs 1.00±0.09, P <0.05), miR-411-5p (FC: 0.40±0.06, vs 1.00±0.11, P <0.001) and the novel miR-pl-86 (FC: 1.96±0.17 vs 1.00±0.15, P <0.05) in MetS vs NTN were validated by RT-qPCR. RNA-seq data were correlated with RT-qPCR for miR-409-5p (R 2 =0.40, P <2.4E-07, n=55), miR-411-5p (R 2 =0.55, P <1.1E-10, n=55), miR-pl-86 (R 2 =0.37, P <5.5E-07, n=56). Conclusion: This study showed that DE miR-409-5p, miR-411-5p and miR-pl-86 may play a role in HTN associated with MetS.


2021 ◽  
Author(s):  
Hongyu Li ◽  
Abdullah A. Gharamah ◽  
Jacob R. Hambrook ◽  
Xinzhong Wu ◽  
Patrick C. Hanington

2021 ◽  
Vol 108 (Supplement_5) ◽  
Author(s):  
W Asanprakit ◽  
D N Lobo ◽  
O Eremin ◽  
A J Bennett

Abstract Introduction The polymeric immunoglobulin receptor (PIGR) is a transmembrane protein, which transports polymeric immunoglobulin (pIg) across the epithelial cells. High expression of PIGR in breast cancer has been reported to associate with increased 5-year survival rate. In this study, the factors in tumour microenvironment which affected PIGR expression in breast cancer cell lines, were investigated. Method M1, M2 macrophage conditioned media (CM) and recombinant human cytokines were used to determine factors which increased PIGR expression in breast cancer cells. The level of PIGR expression in the cells and secreted PIGR free secretory component (SC) were evaluated by real time quantitative polymerase chain reaction and Western blotting. Results M1 macrophage CM induced a striking dose dependent increase in PIGR mRNA expression in MDA-MB468 cells, up to 20-fold in 100% CM. Interferon gamma (IFNγ) and interleukin (IL)-1β also increased PIGR expression in MDA-MB468 cells. However, IL-1β was demonstrated to increase in M1 macrophages, while IFNγ was not. The role of IL-1β secreted from M1 macrophages in increasing expression of PIGR was confirmed by IL-1 receptor blockade, indicating that IL-1β was the M1 macrophage cytokine that enhanced PIGR expression in breast cancer cells. Conclusions IL-1β was the M1 macrophage cytokine which enhanced PIGR expression in breast cancer cells. IFNγ was also shown to increase PIGR expression in the present study. These imply that elevated PIGR expression in breast cancer in vivo may reflect the polarization state of tumour associated immune cells. Take-home Message IL-1β secreted from M1 macrophage enhances PIGR expression in breast cancer cells. The elevated PIGR expression in breast cancer in vivo may reflect the polarization state of tumour associated immune cells.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0125718 ◽  
Author(s):  
Christine Poitou ◽  
Claire Perret ◽  
François Mathieu ◽  
Vinh Truong ◽  
Yuna Blum ◽  
...  

2017 ◽  
Vol 873 ◽  
pp. 71-79
Author(s):  
Xun Hua Yuan ◽  
Qi Fu Zhang

Chinese general hot dip galvanizing industry has made great progress in recent years, with an annual output of more than 13 million tons. In China, general hot dip galvanized products were widely applied in many fields such as power facilities, construction, transportation, etc. Through the introduction of a series of advanced technologies including cleaner production technology, the general galvanizing industry was more environmental friendly and sustainable. In the future, Chinese general hot dip galvanizing industry will continue to pay attention to technological developments so as to improve product quality, reduce energy consumption and pollution.


2012 ◽  
Vol 3 ◽  
Author(s):  
Lanay Tierney ◽  
Jörg Linde ◽  
Sebastian Müller ◽  
Sascha Brunke ◽  
Juan Camilo Molina ◽  
...  

2020 ◽  
Author(s):  
Pan Zhang ◽  
Tianqi Duo ◽  
Fengdan Wang ◽  
Xunzhong Zhang ◽  
Zouzhuan Yang ◽  
...  

Abstract Background: Soil salinization is a major limiting factor for crop cultivation. Switchgrass is a perennial rhizomatous bunchgrass that is considered an ideal plant for marginal lands, including sites with saline soil. Here, we investigated the physiological responses and transcriptome changes in the roots of two switchgrass genotypes under alkaline salt stress.Results: Alkaline salt stress significantly affected the membrane, osmotic adjustment and antioxidant systems in switchgrass roots, and the ASTTI values between Alamo and AM-314/MS-155 were divergent at different time points. A total of 108,319 unigenes were obtained after reassembly, including 73,636 unigenes in AM-314/MS-155 and 65,492 unigenes in Alamo. A total of 10,219 DEGs were identified, and the number of upregulated genes in Alamo was much greater than that in AM-314/MS-155 in both the early and late stages of alkaline salt stress. The DEGs in AM-314/MS-155 were mainly concentrated in the early stage, while Alamo showed greater advantages in the late stage. These DEGs were mainly enriched in plant-pathogen interactions, ubiquitin-mediated proteolysis and glycolysis/gluconeogenesis pathways. We characterized 1,480 TF genes into 64 TF families, and the most abundant TF family was the C2H2 family, followed by the bZIP and bHLH families. A total of 1,718 PKs were predicted, including CaMK, CDPK, MAPK and RLK. WGCNA revealed that the DEGs in the blue, brown, dark magenta and light steel blue 1 modules were associated with the physiological changes in roots of switchgrass under alkaline salt stress. The consistency between the qRT-PCR and RNA-Seq results confirmed the reliability of the RNA-seq sequencing data. A molecular regulatory network of the switchgrass response to alkaline salt stress was preliminarily constructed on the basis of transcriptional regulation and functional genes.Conclusions: The alkaline salt tolerance of switchgrass may be achieved by the regulation of ion homeostasis, transport proteins, detoxification, heat shock proteins, dehydration and sugar metabolism. These findings provide a comprehensive analysis of gene transcription and regulation induced by alkaline salt stress in two switchgrass genotypes and contribute to the understanding of the alkaline salt tolerance mechanism of switchgrass and the improvement of switchgrass germplasm.


2021 ◽  
Vol 11 ◽  
Author(s):  
Hongyoon Choi ◽  
Kwon Joong Na

BackgroundA close metabolic interaction between cancer and immune cells in the tumor microenvironment (TME) plays a pivotal role in cancer immunity. Herein, we have comprehensively investigated the glucose metabolic features of the TME at the single-cell level to discover feasible metabolic targets for the tumor immune status.MethodsWe examined expression levels of glucose transporters (GLUTs) in various cancer types using The Cancer Genome Atlas (TCGA) data and single-cell RNA-seq (scRNA-seq) datasets of human cancer tissues including melanoma, head and neck, and breast cancer. In addition, scRNA-seq data of immune cells in the TME acquired from human melanoma after immune checkpoint inhibitors were analyzed to investigate the dynamics of glucose metabolic profiles of specific immune cells.ResultsPan-cancer bulk RNA-seq showed that the GLUT3-to-GLUT1 ratio was positively associated with immune cell enrichment score. The scRNA-seq datasets of various human cancer tissues showed that GLUT1 was highly expressed in cancer cells, while GLUT3 was highly expressed in immune cells in TME. The scRNA-seq data obtained from human melanoma tissues pre- and post-immunotherapy showed that glucose metabolism features of myeloid cells, particularly including GLUTs expression, markedly differed according to treatment response.ConclusionsDifferently expressed GLUTs in TME suggest that GLUT could be a good candidate a surrogate of tumor immune metabolic profiles and a target for adjunctive treatments for immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document