scholarly journals Untangling Longevity, Dauer, and Healthspan in Caenorhabditis elegans Insulin/IGF-1-Signalling

Gerontology ◽  
2017 ◽  
Vol 64 (1) ◽  
pp. 96-104 ◽  
Author(s):  
Collin Yvès Ewald ◽  
Jorge Iván Castillo-Quan ◽  
T. Keith Blackwell

The groundbreaking discovery that lower levels of insulin/IGF-1 signaling (IIS) can induce lifespan extension was reported 24 years ago in the nematode Caenorhabditis elegans. In this organism, mutations in the insulin/IGF-1 receptor gene daf-2 or other genes in this pathway can double lifespan. Subsequent work has revealed that reduced IIS (rIIS) extends lifespan across diverse species, possibly including humans. In C. elegans, IIS also regulates development into the diapause state known as dauer, a quiescent larval form that enables C. elegans to endure harsh environments through morphological adaptation, improved cellular repair, and slowed metabolism. Considerable progress has been made uncovering mechanisms that are affected by C. elegans rIIS. However, from the beginning it has remained unclear to what extent rIIS extends C. elegans lifespan by mobilizing dauer-associated mechanisms in adults. As we discuss, recent work has shed light on this question by determining that rIIS can extend C. elegans lifespan comparably through downstream processes that are either dauer-related or -independent. Importantly, these two lifespan extension programs can be distinguished genetically. It will now be critical to tease apart these programs, because each may involve different longevity-promoting mechanisms that may be relevant to higher organisms. A recent analysis of organismal “healthspan” has questioned the value of C. elegans rIIS as a paradigm for understanding healthy aging, as opposed to simply extending life. We discuss other work that argues strongly that C. elegans rIIS is indeed an invaluable model and consider the likely possibility that dauer-related processes affect parameters associated with health under rIIS conditions. Together, these studies indicate that C. elegans and analyses of rIIS in this organism will continue to provide unexpected and exciting results, and new paradigms that will be valuable for understanding healthy aging in humans.

2021 ◽  
Vol 13 ◽  
Author(s):  
Abdullah Almotayri ◽  
Jency Thomas ◽  
Mihiri Munasinghe ◽  
Markandeya Jois

Background: The antidepressant mianserin has been shown to extend the lifespan of Caenorhabditis elegans (C. elegans), a well-established model organism used in aging research. The extension of lifespan in C. elegans was shown to be dependent on increased expression of the scaffolding protein (ANK3/unc-44). In contrast, antidepressant use in humans is associated with an increased risk of death. The C. elegans in the laboratory are fed Escherichia coli (E. coli), a diet high in protein and low in carbohydrate, whereas a typical human diet is high in carbohydrates. We hypothesized that dietary carbohydrates might mitigate the lifespan-extension effect of mianserin. Objective: To investigate the effect of glucose added to the diet of C. elegans on the lifespan-extension effect of mianserin. Methods: Wild-type Bristol N2 and ANK3/unc-44 inactivating mutants were cultured on agar plates containing nematode growth medium and fed E. coli. Treatment groups included (C) control, (M50) 50 μM mianserin, (G) 73 mM glucose, and (M50G) 50 μM mianserin and 73 mM glucose. Lifespan was determined by monitoring the worms until they died. Statistical analysis was performed using the Kaplan-Meier version of the log-rank test. Results: Mianserin treatment resulted in a 12% increase in lifespan (P<0.05) of wild-type Bristol N2 worms but reduced lifespan by 6% in ANK3/unc-44 mutants, consistent with previous research. The addition of glucose to the diet reduced the lifespan of both strains of worms and abolished the lifespan-extension by mianserin. Conclusion: The addition of glucose to the diet of C. elegans abolishes the lifespan-extension effects of mianserin.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 38-38
Author(s):  
Jang Miran ◽  
Zhang Yuan ◽  
Bai Juan ◽  
Jun-Bae An ◽  
Park Yeonhwa ◽  
...  

Abstract Objectives Lipolysis is the catabolic process that hydrolyzes triglyceride (TG) to free fatty acids (FFAs) and glycerol under negative energy balance such as fasting. In adipocytes, adipose TG lipase (ATGL), hormone-sensitive lipase (HSL), and monoglyceride lipase play key roles in a series of TG hydrolysis reactions in mammals. However, overly activated adipose lipolysis is believed to contribute to link between obesity and systemic inflammation and oxidative stress. We previously demonstrated that piceatannol (PIC), a natural resveratrol analogue, inhibits adipogenesis in cultured adipocytes and lipogenesis in Caenorhabditis elegans. Furthermore, we showed that PIC extends the lifespan of C. elegans via the insulin/IGF-1 signaling. However, the effects of PIC on lipid metabolism during fasting state is unknown. Methods We conducted Oil-Red-O assay, Enzyme assay (TG and Free glycerol contents), PCR analysis and lifespan assay. Results In this study, we demonstrated that PIC-treated C. elegans exhibited suppressed lipolysis under fasting as judged by increased lipid accumulation and TG levels with decreased free glycerol level. Consistent with these findings, PIC treatment resulted in decreased mRNA levels of genes involved lipolysis such as atgl-1, hosl-1 and aak-2 in fasted C. elegans. Also, PIC treatment augmented fasting-induced lifespan of C. elegans by an increased daf-16 gene expression. However, such effect was abolished when atgl-1, aak-2, and daf-16 mutants were treated with PIC. In addition, we also found that autophagy is required for PIC-induced lifespan in C. elegans during fasting since autophagy inhibitor treatments and autophagy gene deficient worms resulted in blunting the lifespan extension effect of PIC. Conclusions Collectively, our results indicate that PIC contributes to lifespan extension in C. elegans during fasting possibly through regulating lipolysis- and/or autophagy-dependent lipid metabolism. Funding Sources 1. The National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2019R1A2C1086146) and (2019R1A6A3A03033878) 2. The Rural Development Administration of the Republic of Korea.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wenwen Liu ◽  
Yunhui Guan ◽  
Sicong Qiao ◽  
Jiqun Wang ◽  
Keting Bao ◽  
...  

The roots of Vicatia thibetica de Boiss are a kind of Chinese herb with homology of medicine and food. This is the first report showing the property of the extract of Vicatia thibetica de Boiss roots (HLB01) to extend the lifespan as well as promote the healthy parameters in Caenorhabditis elegans (C. elegans). For doxorubicin- (Doxo-) induced premature aging in adult mice, HLB01 counteracted the senescence-associated biomarkers, including P21 and γH2AX. Interestingly, HLB01 promoted the expression of collagen in C. elegans and mammalian cell systemically, which might be one of the essential factors to exert the antiaging effects. In addition, HLB01 was also found as a scavenger of free radicals, thereby performing the antioxidant ability. Lifespan extension by HLB01 was also dependent on DAF-16 and HSF-1 via oxidative stress resistance and heat stress resistance. Taken together, overall data suggested that HLB01 could extend the lifespan and healthspan of C. elegans and resist Doxo-induced senescence in mice via promoting the expression of collagen, antioxidant potential, and stress resistance.


2020 ◽  
Author(s):  
Bánk G. Fenyves ◽  
Gábor S. Szilágyi ◽  
Zsolt Vassy ◽  
Csaba Sőti ◽  
Péter Csermely

AbstractGraph theoretical analyses of nervous systems usually omit the aspect of connection polarity, due to data insufficiency. The chemical synapse network of Caenorhabditis elegans is a well-reconstructed directed network, but the signs of its connections are yet to be elucidated. Here, we present the gene expression-based sign prediction of the C. elegans connectome, incorporating presynaptic neurotransmitter and postsynaptic receptor gene expression data (3,638 connections and 20,589 synapses total). We made successful predictions for more than two-thirds of all chemical synapses and determined a ratio of excitatory-inhibitory (E:I) interneuronal ionotropic chemical connections close to 4:1 which was found similar to that observed in many real-world networks. Our open source tool (http://EleganSign.linkgroup.hu) is simple but efficient in predicting polarities by integrating neuronal connectome and gene expression data.Author SummaryThe fundamental way neurons communicate is by activating or inhibiting each other via synapses. The balance between the two is crucial for the optimal functioning of a nervous system. However, whole-brain synaptic polarity information is unavailable for any species and experimental validation is challenging. The roundworm Caenorhabditis elegans possesses a fully mapped connectome with a comprehensive gene expression profile of its 302 neurons. Based on the consideration that the polarity of a synapse must be determined by the neurotransmitter(s) expressed in the presynaptic neuron and the receptors expressed in the postsynaptic neuron, we conceptualized and created a tool that predicts synaptic polarities based on connectivity and gene expression information. We were able to show for the first time that the ratio of excitatory and inhibitory synapses in C. elegans is around 4 to 1 which is in line with the balance observed in many natural systems. Our method opens a way to include spatial and temporal dynamics of synaptic polarity that would add a new dimension of plasticity in the excitatory:inhibitory balance. Our tool is freely available to be used on any network accompanied by any expression atlas.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 109 ◽  
Author(s):  
Aleksandra Zečić ◽  
Bart P. Braeckman

DAF-16, the only forkhead box transcription factors class O (FoxO) homolog in Caenorhabditis elegans, integrates signals from upstream pathways to elicit transcriptional changes in many genes involved in aging, development, stress, metabolism, and immunity. The major regulator of DAF-16 activity is the insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) pathway, reduction of which leads to lifespan extension in worms, flies, mice, and humans. In C. elegans daf-2 mutants, reduced IIS leads to a heterochronic activation of a dauer survival program during adulthood. This program includes elevated antioxidant defense and a metabolic shift toward accumulation of carbohydrates (i.e., trehalose and glycogen) and triglycerides, and activation of the glyoxylate shunt, which could allow fat-to-carbohydrate conversion. The longevity of daf-2 mutants seems to be partially supported by endogenous trehalose, a nonreducing disaccharide that mammals cannot synthesize, which points toward considerable differences in downstream mechanisms by which IIS regulates aging in distinct groups.


Author(s):  
Elizabeth M. DiLoreto ◽  
Christopher D. Chute ◽  
Samantha Bryce ◽  
Jagan Srinivasan

The complete&nbsp;structure and connectivity of the Caenorhabditis elegans&nbsp;nervous system was first published in 1986. The &lsquo;mind of a worm&rsquo; was the first organism to have its nervous system to be reconstructed at the level of synapses, and represented a critical milestone considering today it remains the only organism to be mapped to that level of connection. Recently, the extrasynaptic connectome of neuropeptides and monoamines has been described. This review discusses recent technological advances used to perturb whole-organism neuronal function, such as: whole brain imaging, optogenetics, sonogenetics and mutant analysis, which have allowed for interrogations of both local and global neural circuits, leading to different behaviors. A better understanding of a whole organism requires combining experimental datasets with biophysical neuronal modelling, and behavioral quantification. Combining these approaches will provide a complete understanding of the worm nervous system and shed light into how networks function and interact with the synaptic network to modulate information processing and behavioral output.


2021 ◽  
Author(s):  
Lucydalila Cedillo ◽  
Sainan Li ◽  
Fasih Ahsan ◽  
Sinclair Emans ◽  
Adebanjo Adedoja ◽  
...  

Biguanides, including the world's most commonly prescribed drug for type 2 diabetes, metformin, not only lower blood sugar, but also promote longevity in preclinical models. Epidemiologic studies in humans parallel these findings, indicating favorable effects of metformin on longevity and on reducing the incidence and morbidity associated with aging-related diseases, such as cancer. In spite of these promising observations, the full spectrum of the molecular effectors responsible for these health benefits remains elusive. Through unbiased genetic screening in C. elegans, we uncovered a novel role for genes necessary for ether lipid biosynthesis in the favorable effects of biguanides. We demonstrate that biguanides govern lifespan extension via a complex effect on the ether lipid landscape requires enzymes responsible for both ether lipid biogenesis and polyunsaturated fatty acid synthesis. Remarkably, loss of the ether lipid biosynthetic machinery also mitigates lifespan extension attributable to dietary restriction, target of rapamycin (TOR) inhibition, and mitochondrial electron transport chain inhibition. Furthermore, overexpression of a single, key ether lipid biosynthetic enzyme, fard-1/FAR1, is sufficient to promote lifespan extension. These findings illuminate the ether lipid biosynthetic machinery as a novel therapeutic target to promote healthy aging.


2004 ◽  
Vol 15 (8) ◽  
pp. 3938-3949 ◽  
Author(s):  
Xiaoyan Yin ◽  
Nicholas J.D. Gower ◽  
Howard A. Baylis ◽  
Kevin Strange

Intercellular communication between germ cells and neighboring somatic cells is essential for reproduction. Caenorhabditis elegans oocytes are surrounded by and coupled via gap junctions to smooth muscle-like myoepithelial sheath cells. Rhythmic sheath cell contraction drives ovulation and is triggered by a factor secreted from oocytes undergoing meiotic maturation. We demonstrate for the first time that signaling through the epidermal growth factor-like ligand LIN-3 and the LET-23 tyrosine kinase receptor induces ovulatory contractions of sheath cells. Reduction-of-function mutations in the inositol 1,4,5-trisphosphate (IP3) receptor gene itr-1 and knockdown of itr-1 expression by RNA interference inhibit sheath contractile activity. itr-1 gain-of-function mutations increase the rate and force of basal contractions and induce tonic sheath contraction during ovulation. Sheath contractile activity is disrupted by RNAi of plc-3, one of six phospholipase C-encoding genes in the C. elegans genome. PLC-3 is a PLC-γ homolog and is expressed in contractile sheath cells of the proximal gonad. Maintenance of sheath contractile activity requires plasma membrane Ca2+ entry. We conclude that IP3 generated by LET-23 mediated activation of PLC-γ induces repetitive intracellular Ca2+ release that drives rhythmic sheath cell contraction. Calcium entry may function to trigger Ca2+ release via IP3 receptors and/or refill intracellular Ca2+ stores.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Orçun Haçariz ◽  
Charles Viau ◽  
Farial Karimian ◽  
Jianguo Xia

Abstract Background A healthy microbiome influences host physiology through a mutualistic relationship, which can be important for the host to cope with cellular stress by promoting fitness and survival. The mammalian microbiome is highly complex and attributing host phenotypes to a specific member of the microbiome can be difficult. The model organism Caenorhabditis elegans and its native microbiome, discovered recently, can serve as a more tractable, experimental model system to study host-microbiome interactions. In this study, we investigated whether certain members of C. elegans native microbiome would offer a benefit to their host and putative molecular mechanisms using a combination of phenotype screening, omics profiling and functional validation. Results A total of 16 members of C. elegans microbiome were screened under chemically-induced toxicity. Worms grown with Chryseobacterium sp. CHNTR56 MYb120 or Comamonas sp. 12022 MYb131, were most resistant to oxidative chemical stress (SiO2 nanoparticles and juglone), as measured by progeny output. Further investigation showed that Chryseobacterium sp. CHNTR56 positively influenced the worm’s lifespan, whereas the combination of both isolates had a synergistic effect. RNAseq analysis of young adult worms, grown with either isolate, revealed the enrichment of cellular detoxification mechanisms (glutathione metabolism, drug metabolism and metabolism of xenobiotics) and signaling pathways (TGF-beta and Wnt signaling pathways). Upregulation of cysteine synthases (cysl genes) in the worms, associated with glutathione metabolism, was also observed. Nanopore sequencing uncovered that the genomes of the two isolates have evolved to favor the specific route of the de novo synthesis pathway of vitamin B6 (cofactor of cysl enzymes) through serC or pdxA2 homologs. Finally, co-culture with vitamin B6 extended worm lifespan. Conclusions In summary, our study indicates that certain colonizing members of C. elegans have genomic diversity in vitamin B6 synthesis and promote host fitness and lifespan extension. The regulation of host cellular detoxification genes (i.e. gst) along with cysl genes at the transcriptome level and the bacterium-specific vitamin B6 synthesis mechanism at the genome level are in an agreement with enhanced host glutathione-based cellular detoxification due to this interspecies relationship. C. elegans is therefore a promising alternative model to study host-microbiome interactions in host fitness and lifespan.


2019 ◽  
Author(s):  
Yue Zhang ◽  
Anne Lanjuin ◽  
Suvagata Roy Chowdhury ◽  
Meeta Mistry ◽  
Carlos G. Silva Garcia ◽  
...  

AbstractTarget of rapamycin complex 1 (TORC1) and AMP-activated protein kinase (AMPK) antagonistically modulate metabolism and aging. However, how they coordinate to determine longevity and if they act via separable mechanisms is unclear. Here, we show that neuronal AMPK is essential for lifespan extension from TORC1 inhibition, and that TORC1 suppression increases lifespan cell non autonomously via distinct mechanisms from global AMPK activation. Lifespan extension by null mutations in genes encoding raga-1 (RagA) or rsks-1 (S6K) is fully suppressed by neuronal-specific rescues. Loss of RAGA-1 increases lifespan via maintaining mitochondrial fusion. Neuronal RAGA-1 abrogation of raga-1 mutant longevity requires UNC-64/syntaxin, and promotes mitochondrial fission cell nonautonomously. Finally, deleting the mitochondrial fission factor DRP-1 renders the animal refractory to the pro-aging effects of neuronal RAGA-1. Our results highlight a new role for neuronal TORC1 in cell nonautonomous regulation of longevity, and suggest TORC1 in the central nervous system might be targeted to promote healthy aging.


Sign in / Sign up

Export Citation Format

Share Document