scholarly journals Dysbiosis in Functional Bowel Disorders

2018 ◽  
Vol 72 (4) ◽  
pp. 296-306 ◽  
Author(s):  
Paul Enck ◽  
Nazar Mazurak

Functional bowel disorders (FBD) resemble a group of diseases of the gastrointestinal (GI) tract that are without a clear pathogenesis; the best known is probably the “irritable bowel syndrome” (IBS). Only recently we have been able to explore the role of the gut microbiota in FBD due to progress in microbiological analytic techniques. There are different ways to explore the role of the gut microbiota and its dysbiosis in FBD. Comparison of the microbial composition in a group of patients with FBD, for example, with IBS to a group of healthy volunteers is one way. Studies have shown that the microbiota in FBD is different from that of healthy controls, but the recorded differences are not necessarily specific for FBD, they may also occur in other diseases. Another approach to explore the role of the gut microbiota in FBD is to challenge the existing “flora” with novel bacteria (probiotics) or with nutritional substrates that stimulate bacterial growth (prebiotics). More than 60 such trials including several thousand patients have been performed in IBS. These studies have produced mixed outcome: some probiotics appear to be better than others, and some appear to work only for a part of the IBS symptoms and not for all. An extreme form of this approach is the transfer of an entire microbiota from 1 healthy person to another, called fecal microbiota transplantation. This has rarely been tested in FBD but is not without risk in benign disorders.

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 690
Author(s):  
Umair Shabbir ◽  
Muhammad Sajid Arshad ◽  
Aysha Sameen ◽  
Deog-Hwan Oh

The gut microbiota (GM) represents a diverse and dynamic population of microorganisms and about 100 trillion symbiotic microbial cells that dwell in the gastrointestinal tract. Studies suggest that the GM can influence the health of the host, and several factors can modify the GM composition, such as diet, drug intake, lifestyle, and geographical locations. Gut dysbiosis can affect brain immune homeostasis through the microbiota–gut–brain axis and can play a key role in the pathogenesis of neurodegenerative diseases, including dementia and Alzheimer’s disease (AD). The relationship between gut dysbiosis and AD is still elusive, but emerging evidence suggests that it can enhance the secretion of lipopolysaccharides and amyloids that may disturb intestinal permeability and the blood–brain barrier. In addition, it can promote the hallmarks of AD, such as oxidative stress, neuroinflammation, amyloid-beta formation, insulin resistance, and ultimately the causation of neural death. Poor dietary habits and aging, along with inflammatory responses due to dysbiosis, may contribute to the pathogenesis of AD. Thus, GM modulation through diet, probiotics, or fecal microbiota transplantation could represent potential therapeutics in AD. In this review, we discuss the role of GM dysbiosis in AD and potential therapeutic strategies to modulate GM in AD.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 145
Author(s):  
Julio Plaza-Díaz ◽  
Patricio Solis-Urra ◽  
Jerónimo Aragón-Vela ◽  
Fernando Rodríguez-Rodríguez ◽  
Jorge Olivares-Arancibia ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is an increasing cause of chronic liver illness associated with obesity and metabolic disorders, such as hypertension, dyslipidemia, or type 2 diabetes mellitus. A more severe type of NAFLD, non-alcoholic steatohepatitis (NASH), is considered an ongoing global health threat and dramatically increases the risks of cirrhosis, liver failure, and hepatocellular carcinoma. Several reports have demonstrated that liver steatosis is associated with the elevation of certain clinical and biochemical markers but with low predictive potential. In addition, current imaging methods are inaccurate and inadequate for quantification of liver steatosis and do not distinguish clearly between the microvesicular and the macrovesicular types. On the other hand, an unhealthy status usually presents an altered gut microbiota, associated with the loss of its functions. Indeed, NAFLD pathophysiology has been linked to lower microbial diversity and a weakened intestinal barrier, exposing the host to bacterial components and stimulating pathways of immune defense and inflammation via toll-like receptor signaling. Moreover, this activation of inflammation in hepatocytes induces progression from simple steatosis to NASH. In the present review, we aim to: (a) summarize studies on both human and animals addressed to determine the impact of alterations in gut microbiota in NASH; (b) evaluate the potential role of such alterations as biomarkers for prognosis and diagnosis of this disorder; and (c) discuss the involvement of microbiota in the current treatment for NAFLD/NASH (i.e., bariatric surgery, physical exercise and lifestyle, diet, probiotics and prebiotics, and fecal microbiota transplantation).


2021 ◽  
Author(s):  
Yiyangzi Ma ◽  
Ruru Guo ◽  
Yiduo Sun ◽  
Xin Li ◽  
Lun He ◽  
...  

Background: The etiology of systemic lupus erythematosus (SLE) is multifactorial. Recently, growing evidence suggests that the microbiota plays a role in SLE, yet whether gut microbiota participates in the development of SLE remains largely unknown. To investigate this issue, we carried out 16s rDNA sequencing analyses in a cohort of 18 female un-treated active SLE patients and 7 female healthy controls, and performed fecal microbiota transplantation from patients and healthy controls to germ-free mice. Results: Compared to the healthy controls, we found no significant different microbial diversity but some significantly different species in SLE patients including Turicibacter genus and other 5 species. Fecal transfer from SLE patients to germ free (GF) C57BL/6 mice caused GF mice to develop a series of lupus-like phenotyptic features, which including an increased serum autoimmune antibodies, and imbalanced cytokines, altered distribution of immune cells in mucosal and peripheral immune response, and upregulated expression of genes related to SLE in recipient mice that received SLE fecal microbiota transplantation (FMT). Moreover, the metabolism of histidine was significantly altered in GF mice treated with SLE patient feces, as compared to those which received healthy fecal transplants. Conclusions: Overall, our results describe a causal role of aberrant gut microbiota in contributing to the pathogenesis of SLE. The interplay of gut microbial and histidine metabolism may be one of the mechanisms intertwined with autoimmune activation in SLE.


2019 ◽  
Vol 20 (18) ◽  
pp. 4584 ◽  
Author(s):  
Romain Villéger ◽  
Amélie Lopès ◽  
Guillaume Carrier ◽  
Julie Veziant ◽  
Elisabeth Billard ◽  
...  

Recently, preclinical and clinical studies targeting several types of cancer strongly supported the key role of the gut microbiota in the modulation of host response to anti-tumoral therapies such as chemotherapy, immunotherapy, radiotherapy and even surgery. Intestinal microbiome has been shown to participate in the resistance to a wide range of anticancer treatments by direct interaction with the treatment or by indirectly stimulating host response through immunomodulation. Interestingly, these effects were described on colorectal cancer but also in other types of malignancies. In addition to their role in therapy efficacy, gut microbiota could also impact side effects induced by anticancer treatments. In the first part of this review, we summarized the role of the gut microbiome on the efficacy and side effects of various anticancer treatments and underlying mechanisms. In the second part, we described the new microbiota-targeting strategies, such as probiotics and prebiotics, antibiotics, fecal microbiota transplantation and physical activity, which could be effective adjuvant therapies developed in order to improve anticancer therapeutic efficiency.


2019 ◽  
Vol 28 (12) ◽  
pp. 1507-1527 ◽  
Author(s):  
Giovanni Schepici ◽  
Serena Silvestro ◽  
Placido Bramanti ◽  
Emanuela Mazzon

Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating, and degenerative disease that affects the central nervous system. A recent study showed that interaction between the immune system and the gut microbiota plays a crucial role in the development of MS. This review reports the clinical studies carried out in recent years that aimed to evaluate the composition of the microbiota in patients with relapsing–remitting MS (RR-MS). We also report what is available in the literature regarding the effectiveness of fecal microbiota transplantation and the role of the diet in restoring the intestinal bacterial population. Studies report that patients with RR-MS have a microbiota that, compared with healthy controls, has higher amounts of Pedobacteria, Flavobacterium, Pseudomonas, Mycoplana, Acinetobacter, Eggerthella, Dorea, Blautia, Streptococcus and Akkermansia. In contrast, MS patients have a microbiota with impoverished microbial populations of Prevotella, Bacteroides, Parabacteroides, Haemophilus, Sutterella, Adlercreutzia, Coprobacillus, Lactobacillus, Clostridium, Anaerostipes and Faecalibacterium. In conclusion, the restoration of the microbial population in patients with RR-MS appears to reduce inflammatory events and the reactivation of the immune system.


2016 ◽  
Vol 34 (3) ◽  
pp. 279-285 ◽  
Author(s):  
Giovanni Cammarota ◽  
Silvia Pecere ◽  
Gianluca Ianiro ◽  
Luca Masucci ◽  
Diego Currò

Fecal microbiota transplantation (FMT), a process by which the normal gastrointestinal microbiota is restored, has demonstrated extraordinary cure rates for Clostridium difficile infection and low recurrence. The community of microorganisms within the human gut (or microbiota) is critical to health status and functions; therefore, together with the rise of FMT, the gastrointestinal microbiota has emerged as a ‘virtual' organ with a level of complexity comparable to that of any other organ system and capable to compete with powerful known antibiotics for the treatment of several disorders. Although treatment protocols, donor selection, stool preparation and delivery methods varied widely, with a few reports following an identical protocol, FMT has diffused to other areas where the alterations of the gut microbiota ecology (or dysbiosis) have been theorized to play a causative role, including inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), among several other extra-intestinal disorders (i.e. metabolic syndrome and obesity, multiple sclerosis, cardiovascular diseases). FMT can be relatively simple to perform, but a number of challenges need to be overcome before this procedure is widely accepted in clinical practice, and currently, there is no consensus between the various gastrointestinal organizations and societies regarding the FMT procedure. In this article, we describe the modern high-throughput sequencing techniques to characterize the composition of gut microbiota and the potential for therapeutics by manipulating microbiota with FMT in several gastrointestinal disorders (C. difficile-associated diarrhea, IBD and IBS), with a look on the potential future directions of FMT.


2020 ◽  
Vol 15 (12) ◽  
pp. 1173-1183
Author(s):  
Gianluca Ianiro ◽  
Jonathan P Segal ◽  
Benjamin H Mullish ◽  
Mohammed N Quraishi ◽  
Serena Porcari ◽  
...  

Fecal microbiota transplantation (FMT) is the infusion of feces from a healthy donor into the gut of a recipient to treat a dysbiosis-related disease. FMT has been proven to be a safe and effective treatment for Clostridioides difficile infection, but increasing evidence supports the role of FMT in other gastrointestinal and extraintestinal diseases. The aim of this review is to paint the landscape of current evidence of FMT in different fields of application (including irritable bowel syndrome, inflammatory bowel disease, liver disorders, decolonization of multidrug-resistant bacteria, metabolic disorders and neurological disorders), as well as to discuss the current regulatory scenario of FMT, and hypothesize future directions of FMT.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hyun Sik Kim ◽  
Tae Woong Whon ◽  
Hojun Sung ◽  
Yun-Seok Jeong ◽  
Eun Sung Jung ◽  
...  

AbstractCalf diarrhea is associated with enteric infections, and also provokes the overuse of antibiotics. Therefore, proper treatment of diarrhea represents a therapeutic challenge in livestock production and public health concerns. Here, we describe the ability of a fecal microbiota transplantation (FMT), to ameliorate diarrhea and restore gut microbial composition in 57 growing calves. We conduct multi-omics analysis of 450 longitudinally collected fecal samples and find that FMT-induced alterations in the gut microbiota (an increase in the family Porphyromonadaceae) and metabolomic profile (a reduction in fecal amino acid concentration) strongly correlate with the remission of diarrhea. During the continuous follow-up study over 24 months, we find that FMT improves the growth performance of the cattle. This first FMT trial in ruminants suggest that FMT is capable of ameliorating diarrhea in pre-weaning calves with alterations in their gut microbiota, and that FMT may have a potential role in the improvement of growth performance.


2021 ◽  
Author(s):  
Suyan Li ◽  
Fenyan Zhang ◽  
Yiguang Lin ◽  
Xiaoli Niu ◽  
Jian Lv ◽  
...  

Abstract Background Accumulating evidence suggests that the intestinal flora is involved in many neurodegenerative diseases. Sepsis can lead to severe intestinal flora imbalance and brain dysfunction. In this study, we investigated Sennoside A may relieve lipopolysaccharide(LPS)-associated encephalopathy via its effect on the gut microbiota in rats. Methods Adult male Sprague-Dawley (SD) rats and germ free (GF) rats were used. The ordinary and germ free SD rats were adopted as a LPS-associated encephalopathy model with or without Sennoside A administration. We investigated gut microbiota diversity and structure, conducted electroencephalograms (EEG) and measured the levels of TNF-α, IL-1β and IL-6 in the cortexes of Sprague Dawley (SD) rats with or without Sennoside A administration. Horizontal fecal microbiota transplantation (FMT) and germ-free rats were used to confirm the important roles of gut microbiota in the mitigation of LPS-associated encephalopathy in rats after Sennoside A supplementation. Results We found that Sennoside A treatment markedly improved brain function in septic rats including decreased ratios of abnormal EEG and lowered levels of TNF-α, IL-1β, and IL-6 in the rat cortexes. While the gut microbiota changed in septic SD rats, Sennoside A improved gut microbial composition, which might mediate its brain protective effects in sepsis. Sennoside A also reduced inflammation in the cortexes of septic rats via gut microbiota improvement. In germ-free rats that received lipopolysaccharide(LPS),Sennoside A could not lower the ratios of abnormal EEG, and could not alleviate TNF-α, IL-1β, and IL-6 levels in the rats’ cortexes. FMT lowered the ratios of abnormal EEG and alleviate TNF-α, IL-1β, and IL-6 levels in rats’ cortexes, which confirmed our hypothesis that the effect of Sennoside A on the improvement of LPS-associated encephalopathy through gut microbiota. Conclusion Our data confirm our hypothesis that Sennoside A likely exerts its brain protective effects through gut microbiota alteration.


2019 ◽  
Vol 73 ◽  
pp. 316-324
Author(s):  
Aleksandra Kwiatkowska ◽  
Karolina Skonieczna-Żydecka ◽  
Maria Marlicz ◽  
Wojciech Marlicz

The knowledge of the role of the digestive tract in human physiology and pathology has expanded tremendously in recent years. The human intestine is a habitat for a host complex of bacteria, fungi, viruses and Acheaea, all contributing to food digestion, fermentation, metabolism of xenobiotics as well as immune and neuroendocrine functions. Moreover, evidence is mounting that many environmental factors such as diet, drugs, stress and infection may potentially disrupt intestinal microbial milieu. Therefore, methods aimed to modulate gut microbiota are eagerly investigated and applied into daily clinical practice. Fecal microbiota transplantation (FMT) is a transplant of gut bacteria from a healthy donor to a recipent. Usually, the stool bacteria are introduced by means of colonoscopy, gastroduodenoscopy, enema, orogastric tube or orally in the form of a capsule containing freeze-dried material. The effectivness of FMT in the treatment of recurrent Clostridioides difficile infection (CDI) has been confirmed in a numer of high quality studies and is currently recommended as evidence-based therapy in clinical settings. However, FMT is promising in the treatment of other diseases, as it has proven to be an effective method of treating ulcerative colitis (UC) and is of promise in treating Crohn’s disease (CD), metabolic and neuropsychiatric disorders. Many questions related to FMT remain unanswered. A better understanding of fecal and mucosal microbial composition is needed, followed by the optimisation of regulatory issues and selection of best possible donor. Novel protocols based on a new class of probiotics as emerging alternatives to FMT in CDI are also briefly disscussed.


Sign in / Sign up

Export Citation Format

Share Document