scholarly journals Resveratrol Ameliorates Lipid Droplet Accumulation in Liver Through a SIRT1/ ATF6-Dependent Mechanism

2018 ◽  
Vol 51 (5) ◽  
pp. 2397-2420 ◽  
Author(s):  
Rui Zhou ◽  
Long Yi ◽  
Xikun Ye ◽  
Xianglong Zeng ◽  
Kai Liu ◽  
...  

Background/Aims: Lipid droplets (LDs) are dynamic organelles that store neutral lipids during times of energy excess, and an increased accumulation of LDs in the liver is closely linked to hepatic steatosis. Our previous studies suggested that resveratrol (RSV) supplement could improve hepatic steatosis, but the underlying mechanism, particularly which related to LD accumulation, has not yet been elucidated. Methods: A high-fat diet (HFD) and palmitic acid were used to induce hepatic steatosis in mouse liver and hepatocytes, respectively. The effects of RSV on LD accumulation were analyzed in vivo and in vitro. The effects of RSV on the expression levels of LD-associated genes (ATF6, Fsp27β/CIDEC, CREBH, and PLIN1) were measured by qRT-PCR and western blot assays, followed by KD or overexpression of SIRT1 and ATF6 with small interfering RNAs or overexpressed plasmids, respectively. The dual luciferase reporter assay, chromatin immunoprecipitation assay, coimmunoprecipitation, and proximity ligation assay were utilized to clarify the mechanism of transcriptional regulation and possible interaction between SIRT1 and ATF6. Results: There was a significant increase in the accumulation of LDs in liver and hepatocytes during the process of HFD-induced steatosis, respectively, which was significantly inhibited by RSV supplementation. RSV notably activated SIRT1 expression and decreased the expression levels of ATF6, Fsp27β/CIDEC, CREBH, and PLIN1, which are associated with LD accumulation. Interestingly, the inhibitory effects of RSV on LD accumulation and the associated expression of genes in hepatocytes were abrogated or strengthened with SIRT1 silencing or overexpression, respectively. On the contrary, the benefits of RSV in hepatocytes were eliminated or aggravated when transfected with the overexpressed ATF6 or ATF6 siRNA, respectively. Furthermore, we found that RSV stimulated SIRT1 expression significantly, which was followed by increased deacetylation and inactivation of ATF6, resulting in a positive feedback loop for SIRT1 transcription associated with ATF6 binding to the SIRT1 promoter region. Conclusion: Taken together, these findings indicate that RSV supplementation improves hepatic steatosis by ameliorating the accumulation of LDs, and this might be partially mediated by a SIRT1/ATF6-dependent mechanism.

2020 ◽  
Vol 40 (6) ◽  
Author(s):  
MingJun Shi ◽  
PingPing Tian ◽  
ZhongQiang Liu ◽  
Fan Zhang ◽  
YingYing Zhang ◽  
...  

Abstract Diabetic nephropathy (DN) commonly causes end-stage renal disease (ESRD). Increasing evidence indicates that abnormal miRNA expression is tightly associated with chronic kidney disease (CKD). This work aimed to investigate whether miR-27a can promote the occurrence of renal fibrosis in DN by suppressing the expression of secreted frizzled-related protein 1 (Sfrp1) to activate Wnt/β-catenin signalling. Therefore, we assessed the expression levels of miR-27a, Sfrp1, Wnt signalling components, and extracellular matrix (ECM)-related molecules in vitro and in vivo. Sfrp1 was significantly down-regulated in a high-glucose environment, while miR-27a levels were markedly increased. A luciferase reporter assay confirmed that miR-27a down-regulated Sfrp1 by binding to the 3′ untranslated region directly. Further, NRK-52E cells under high-glucose conditions underwent transfection with miR-27a mimic or the corresponding negative control, miR-27a inhibitor or the corresponding negative control, si-Sfrp1, or combined miR-27a inhibitor and si-Sfrp1. Immunoblotting and immunofluorescence were performed to assess the relative expression levels of Wnt/β-catenin signalling and ECM components. The mRNA levels of Sfrp1, miR-27a, and ECM-related molecules were also detected by quantitative real-time PCR (qPCR). We found that miR-27a inhibitor inactivated Wnt/β-catenin signalling and reduced ECM deposition. Conversely, Wnt/β-catenin signalling was activated, while ECM deposition was increased after transfection with si-Sfrp1. Interestingly, miR-27a inhibitor attenuated the effects of si-Sfrp1. We concluded that miR-27a down-regulated Sfrp1 and activated Wnt/β-catenin signalling to promote renal fibrosis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wei Zhang ◽  
Xiaomin Li ◽  
Wenjuan Zhang ◽  
Yanxia Lu ◽  
Weihao Lin ◽  
...  

BackgroundWe previously reported that the long non-coding RNA (lncRNA) CASC11 promotes colorectal cancer (CRC) progression as an oncogene by binding to HNRNPK. However, it remains unknown whether CASC11 can act as a competitive endogenous RNA (ceRNA) in CRC. In this study, we focused on the role of CASC11 as a ceRNA in CRC by regulating miR-646 and miR-381-3p targeting of RAB11FIP2.MethodsWe identified the target microRNAs (miRNAs) of CASC11 and the target genes of miR-646 and miR-381-3p using bioinformatic methods. A dual-luciferase reporter assay was performed to validate the target relationship. Quantitative real-time PCR (qRT-PCR), western blotting (WB), and immunohistochemistry (IHC) were used to measure the RNA and protein expression levels. Rescue experiments in vitro and in vivo were performed to investigate the influence of the CASC11/miR-646 and miR-381-3p/RAB11FIP2 axis on CRC progression.ResultsWe found that CASC11 binds to miR-646 and miR-381-3p in the cytoplasm of CRC cells. Moreover, miR-646 and miR-381-3p inhibitors reversed the suppressive effect of CASC11 silencing on CRC growth and metastasis in vitro and in vivo. We further confirmed that RAB11FIP2 is a mutual target of miR-646 and miR-381-3p. The expression levels of CASC11 and RAB11FIP2 in CRC were positively correlated and reciprocally regulated. Further study showed that CASC11 played an important role in regulating PI3K/AKT pathway by miR-646 and miR-381-3p/RAB11FIP2 axis.ConclusionOur study showed that CASC11 promotes the progression of CRC as a ceRNA by sponging miR-646 and miR-381-3p. Thus, CASC11 is a potential biomarker and a therapeutic target of CRC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Da Wang ◽  
Fei Xiong ◽  
Guanhua Wu ◽  
Wenzheng Liu ◽  
Bing Wang ◽  
...  

Abstract Background Accumulating evidence has demonstrated the close relation of SOX1 with tumorigenesis and tumor progression. Upregulation of SOX1 was recently shown to suppress growth of human cancers. However, the expression and role of SOX1 in cholangiocarcinoma (CCA) is not well characterized. Methods Expression levels of SOX1 in CCA tissues and normal bile duct tissues were examined using public GEO database. Western blot and immunohistochemistry were used to confirm the expression levels. Cell proliferation assay (CCK-8) and colony formation assay were performed to assess proliferation of CCA cells. A mouse model of subcutaneous transplantable tumors was used to evaluated proliferation of CCA in vivo. The putative regulating factor of SOX1 were determined using Targetscan and dual-luciferase reporter assay. Results SOX1 was downregulated in CCA tissues. Overexpression of SOX1 significantly inhibited cell proliferation in vitro and suppressed tumor growth in vivo. miR-155-5p directly targeted the 3′-untranslated region (3′UTR) of SOX1 and inhibited expression of SOX1, resulting in the activation of RAF, MEK and ERK phosphorylation, and thus CCA proliferation. However, restoration of SOX1 expression in miR-155-5p overexpressing cell lines decreased the phosphorylation level of RAF, MEK and ERK, as well as the proliferation of CCA cells. Conclusion MiR-155-5p decreased the expression of SOX1 by binding to its 3′UTR, which activated the RAF/MEK/ERK signaling pathway and promoted CCA progression.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Huan-yu Zhang ◽  
Mao-qing Xing ◽  
Jing Guo ◽  
Jin-chuan Zhao ◽  
Xin Chen ◽  
...  

Abstract Background Long noncoding RNAs (lncRNAs) play essential roles in tumor progression. However, the functions and targets of lncRNAs in neuroblastoma (NB) progression still remain to be determined. In this study, we aimed to investigate the effect of lncRNA DLX6 antisense RNA 1 (DLX6-AS1) on NB and the underlying mechanism involved. Methods Through mining of public microarray datasets, we identify aberrantly expressed lncRNAs in NB. The gene expression levels were determined by quantitative real-time PCR, and protein expression levels were determined by western blot assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony formation assay, wound-healing assay, transwell invasion assays and flow cytometry analysis were utilized to examine cell proliferation, migration, invasion and apoptosis. Luciferase reporter assay was performed to confirm the interaction between DLX6-AS1and its potential targets. Tumor xenograft assay was used to verify the role of DLX6-AS1 in NB in vivo. Results We identified DLX6-AS1 was upregulated in NB by using a public microarray dataset. The expression of DLX6-AS1 was increased in NB tissues and derived cell lines, and high expression of DLX6-AS1 was positively correlated with advanced TNM stage and poor differentiation. Knockdown of DLX6-AS1 induced neuronal differentiation, apoptosis and inhibited the growth, invasion, and metastasis of NB cells in vitro and impaired tumor growth in vivo. MiR-107 was the downstream target of DLX6-AS1. MiR-107 was found to target brain‐derived neurotrophic factor (BDNF) which is an oncogene in NB. Knockdown of miR-107 or overexpression of BDNF reversed the suppression of NB progression caused by DLX6-AS1 silence. Conclusion Overall, our finding supports that DLX6-AS1 promotes NB progression by regulating miR-107/BDNF pathway, acting as a novel therapeutic target for NB.


2020 ◽  
Author(s):  
Yao Jianning ◽  
Wang Chunfeng ◽  
Dong Xuyang ◽  
Zhang Yanzhen ◽  
Li Yanle ◽  
...  

Abstract Background: Long non-coding RNA (lncRNA) termed small nucleolar RNA host gene 22 (SNHG22) has been reported as a crucial regulator in several types of human cancers. In this study, we aimed to evaluate the function and mechanism of SNHG22 in colorectal cancer (CRC) progression. Methods: Quantitative RT-PCR (qRT-PCR) was used to detect the expression of SNHG22 in adenoma, tumor tissues (TTs), and adjacent nontumorous tissues (ANTs). The biological behaviors of SNHG22 in CRC cell lines were explored both in vitro (CCK-8 assay, flow cytometry, wound scratch, and transwell assays) and in vivo (nude mouse xenograft model). The interaction between SNHG22 and miR-128-3p, and the target genes of miR-128-3p were explored by online tools, qRT-PCR, western blot, and dual-luciferase reporter assay. Results: SNHG22 expression was gradually upregulated in ANTs, adenoma, and TTs. High expression levels of SNHG22 were significantly related to advanced clinicopathological factors and worse survival in patients with CRC. SNHG22 knockdown markedly prohibited CRC cell proliferation, migration, and invasion; and drove cell apoptosis in vitro; and hindered tumor growth in vivo. Mechanistic investigation showed that SNHG22 could bind to microRNA-128-3p (miR-128-3p) and attenuate its inhibitory effects on the expression levels and activity of E2F3. Rescue experiments exhibited that miR-128-3p inhibition or E2F3 upregulation can offset the functions of SNHG22 knockdown in CRC cells. Conclusion: Our findings support the existence of an interactive regulatory network of SNHG22, miR-128-3p, and E2F3 in CRC cell lines, indicating that the SNHG22/miR-128-3p/E2F3 axis is a novel diagnostic and therapeutic target in CRC.


2021 ◽  
Vol 22 (13) ◽  
pp. 6649
Author(s):  
Yunan Gao ◽  
Yan Sun ◽  
Adife Gulhan Ercan-Sencicek ◽  
Justin S. King ◽  
Brynn N. Akerberg ◽  
...  

Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that modulate innate immune responses and play essential roles in the pathogenesis of heart diseases. Although important, the molecular mechanisms controlling cardiac TLR genes expression have not been clearly addressed. This study examined the expression pattern of Tlr1, Tlr2, Tlr3, Tlr4, Tlr5, Tlr6, Tlr7, Tlr8, and Tlr9 in normal and disease-stressed mouse hearts. Our results demonstrated that the expression levels of cardiac Tlr3, Tlr7, Tlr8, and Tlr9 increased with age between neonatal and adult developmental stages, whereas the expression of Tlr5 decreased with age. Furthermore, pathological stress increased the expression levels of Tlr2, Tlr4, Tlr5, Tlr7, Tlr8, and Tlr9. Hippo-YAP signaling is essential for heart development and homeostasis maintenance, and YAP/TEAD1 complex is the terminal effector of this pathway. Here we found that TEAD1 directly bound genomic regions adjacent to Tlr1, Tlr2, Tlr3, Tlr4, Tlr5, Tlr6, Tlr7, and Tlr9. In vitro, luciferase reporter data suggest that YAP/TEAD1 repression of Tlr4 depends on a conserved TEAD1 binding motif near Tlr4 transcription start site. In vivo, cardiomyocyte-specific YAP depletion increased the expression of most examined TLR genes, activated the synthesis of pro-inflammatory cytokines, and predisposed the heart to lipopolysaccharide stress. In conclusion, our data indicate that the expression of cardiac TLR genes is associated with age and activated by pathological stress and suggest that YAP/TEAD1 complex is a default repressor of cardiac TLR genes.


2020 ◽  
Vol 53 (1) ◽  
Author(s):  
Jun Zhao ◽  
Lijiao Geng ◽  
Yong Chen ◽  
Chunfang Wu

Abstract Background Long non-coding RNA small molecule RNA host gene 1 (SNHG1) was previously identified to be relevant with Parkinson’s disease (PD) pathogenesis. This work aims to further elucidate the regulatory networks of SNHG1 involved in PD. Methods 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-hydrochloride (MPTP)-induced mice and 1-methyl-4-phenylpyridinium (MPP+)-treated SH-SY5Y cells were respectively constructed as the in vivo and in vitro PD models. Expression levels of SNHG1 and miR-153-3p were detected by qRT-PCR. Protein expression levels of phosphate and tension homology deleted on chromosome ten (PTEN) were measured by western blotting assay. Cell viability and apoptosis were determined by MTT and flow cytometry assays. The interactions among SNHG1, miR-153-3p and PTEN were identified by luciferase reporter assay, RNA immunoprecipitation, and/or RNA pull-down analysis. Results Increased SNHG1 expression was found in midbrain of MPTP-induced PD mice and MPP+-treated SH-SY5Y cells. Overexpression of SNHG1 lowered viability and enhanced apoptosis in MPP+-treated SH-SY5Y cells. Moreover, SNHG1 acted as a molecular sponge to inhibit the expression of miR-153-3p. Furthermore, miR-153-3p-mediated suppression of MPP+-induced cytotoxicity was abated following SNHG1 up-regulation. Additionally, PTEN was identified as a direct target of miR-153-3p, and SNHG1 could serve as a competing endogenous RNA (ceRNA) of miR-153-3p to improve the expression of PTEN. Besides, enforced expression of PTEN displayed the similar functions as SNHG1 overexpression in regulating the viability and apoptosis of MPP+-treated SH-SY5Y cells. Finally, SNHG1 was found to activate PTEN/AKT/mTOR signaling pathway in SH-SY5Y cells by targeting miR-153-3p. Conclusion SNHG1 aggravates MPP+-induced cellular toxicity in SH-SY5Y cells by regulating PTEN/AKT/mTOR signaling via sponging miR-153-3p, indicating the potential of SNHG1 as a promising therapeutic target for PD.


2020 ◽  
Author(s):  
Zengxi Yang ◽  
Xi OuYang ◽  
Liang Zheng ◽  
Lizhen Dai ◽  
Wenjuan Luo

Abstract Background:The expression levels and detailed functions of LINC00265 in gastric cancer (GC) have not yet been explored. This study aimed to measure LINC00265 expression in GC tissues and cell lines, investigate its specific roles in the aggressive characteristics of GC cells in vitro and in vivo, and elucidate the regulatory mechanisms of LINC00265 action.Materials and methods: The qRT-PCR was performed to test the RNA expression levels in GC tissues and cell lines. Cell proliferation was detected by CCK-8 and colony formation assays. Western blot assay was used to measure relevant protein expression. Luciferase reporter assays were performed to investigate the association between LINC00265 and microRNA-144-3p and CBX4.Results: LINC00265 expression was high in GC tissue samples and cell lines; LINC00265 overexpression correlated with shorter overall survival of the patients. A LINC00265 knockdown inhibited GC cell proliferation in vitro and slowed tumor growth in vivo. Mechanism investigation revealed that LINC00265 acts as a competing endogenous RNA on microRNA-144-3p (miR- 144) in GC cells. Chromobox 4 (CBX4) mRNA was identified as a direct target of miR-144-3p in GC cells. The knockdown of miR-144-3p counteracted the reduction in the malignant characteristics of GC cells by the downregulation of LINC00265.Conclusion: In conclusion, LINC00265 functions as a competing endogenous RNA targeting miR-144-3p and increases the malignancy of GC cells in vitro and in vivo by upregulating CBX4.


Author(s):  
Jinxin Chen ◽  
Xiaocen Li ◽  
Lu Yang ◽  
Jingru Zhang

Accumulating evidence has shown that long non-coding RNAs (lncRNAs) can be used as biological markers and treatment targets in cancer and play various roles in cancer-related biological processes. However, the lncRNA expression profiles and their roles and action mechanisms in ovarian cancer (OC) are largely unknown. Here, we assessed the lncRNA expression profiles in OC tissues from The Cancer Genome Atlas (TCGA) database, and one upregulated lncRNA, LINC01969, was selected for further study. LINC01969 expression levels in 41 patients were verified using quantitative real-time polymerase chain reaction (qRT-PCR). The in vitro effects of LINC01969 on OC cell migration, invasion, and proliferation were determined by the CCK-8, ethynyl-2-deoxyuridine (EdU), wound healing, and Transwell assays. Epithelial–mesenchymal transition (EMT) was evaluated using qRT-PCR and Western blotting. The molecular mechanisms of LINC01969 in OC were assessed through bioinformatics analysis, RNA-binding protein immunoprecipitation (RIP), dual luciferase reporter gene assays, and a rescue experiment. Finally, in vivo experiments were conducted to evaluate the functions of LINC01969. The results of the current study showed that LINC01969 was dramatically upregulated in OC, and patients with lower LINC01969 expression levels tended to have better overall survival. Further experiments demonstrated that LINC01969 promoted the migration, invasion, and proliferation of OC cells in vitro and sped up tumor growth in vivo. Additionally, LINC01969, which primarily exists in the cytoplasm, boosted LARP1 expression by sponging miR-144-5p and promoted the malignant phenotypes of OC cells. In conclusion, the LINC01969/miR-144-5p/LARP1 axis is a newly identified regulatory signaling pathway involved in OC progression.


Sign in / Sign up

Export Citation Format

Share Document