scholarly journals Lightweight hardware fingerprinting solution using inherent memory in off-the-shelf commodity devices

Author(s):  
Mohd Syafiq Mispan ◽  
Aiman Zakwan Jidin ◽  
Muhammad Raihaan Kamarudin ◽  
Haslinah Mohd Nasir

An emerging technology known as Physical unclonable function (PUF) can provide a hardware root-of-trust in building the trusted computing system. PUF exploits the intrinsic process variations during the integrated circuit (IC) fabrication to generate a unique response. This unique response differs from one PUF to the other similar type of PUFs. Static random-access memory PUF (SRAM-PUF) is one of the memory-based PUFs in which the response is generated during the memory power-up process. Non-volatile memory (NVM) architecture like SRAM is available in off-the-shelf microcontroller devices. Exploiting the inherent SRAM as PUF could wide-spread the adoption of PUF. Therefore, in this study, we evaluate the suitability of inherent SRAM available in ATMega2560 microcontroller on Arduino platform as PUF that can provide a unique fingerprint. First, we analyze the start-up values (SUVs) of memory cells and select only the cells that show random values after the power-up process. Subsequently, we statistically analyze the characteristic of fifteen SRAM-PUFs which include uniqueness, reliability, and uniformity. Based on our findings, the SUVs of fifteen on-chip SRAMs achieve 42.64% uniqueness, 97.28% reliability, and 69.16% uniformity. Therefore, we concluded that the available SRAM in off-the-shelf commodity hardware has good quality to be used as PUF.

MRS Bulletin ◽  
1994 ◽  
Vol 19 (8) ◽  
pp. 15-21 ◽  
Author(s):  
Jian Li ◽  
Tom E. Seidel ◽  
Jim W. Mayer

The demand for manufacturing integrated circuit (IC) devices such as dynamic random access memory (DRAM), static random access memory (SRAM), electrically erasable and programmable read only memory (EEPROM) and logic devices with high circuit speed, high packing density and low power dissipation requires the downward scaling of feature sizes in ultralarge-scale integration (ULSI) structures. When chip size becomes smaller, the propagation delay time in a device is reduced. However, the importance of on-chip interconnect RC (resistance capacitance) delay to chip performance, reliability, and processing cost is increasing dramatically. When interconnect feature size decreases and clock frequencies increase, RC time delays become the major limitation in achieving high circuit speeds. The miniaturization of interconnect feature size also severely penalizes the overall performance of the interconnect, such as increasing interconnect resistance and interconnect current densities, which lead to reliability concerns due to electromigration. Lower resistance metal and lower dielectric materials are being considered to replace current Al and SiO2 interconnect materials. Innovative efforts in circuit design, process development, and the implementation of new materials can provide solutions. This issue of the MRS Bulletin focuses on the industrial viewpoint of copper interconnects. (A previous issue of the MRS Bulletin, June 1993, addressed university research approaches to copper metallization.) Articles in this issue, from six major semiconductor companies—IBM, Motorola, AT&T Bell Laboratories, SEMATECH/National Semiconductor, NTT, and Fujitsu—provide a real-world viewpoint of the challenges faced when replacing aluminum with copper. The articles published in both issues also contain a comprehensive list of references (more than 300) to articles, patents, and device applications related to copper metallization for ULSI applications.


2017 ◽  
Vol 32 (4) ◽  
pp. 381-392
Author(s):  
Irfan Fetahovic ◽  
Edin Dolicanin ◽  
Djordje Lazarevic ◽  
Boris Loncar

In this paper we give an overview of radiation effects in emergent, non-volatile memory technologies. Investigations into radiation hardness of resistive random access memory, ferroelectric random access memory, magneto-resistive random access memory, and phase change memory are presented in cases where these memory devices were subjected to different types of radiation. The obtained results proved high radiation tolerance of studied devices making them good candidates for application in radiation-intensive environments.


2014 ◽  
Vol 602-603 ◽  
pp. 1056-1059 ◽  
Author(s):  
Min Chang Kuan ◽  
Fann Wei Yang ◽  
Chien Min Cheng ◽  
Kai Huang Chen ◽  
Jian Tz Lee

Up to now, the various non-volatile memory devices such as, ferroelectric random access memory (FeRAM), magnetron random access memory (MRAM), and resistance random access memory (RRAM) were widely discussed and investigated. For these nonvolatile memory devices, the resistance random access memory (RRAM) devices will play an important role because of its non-destructive readout, low operation voltage, high operation speed, long retention time, and simple structure. The resistance random access memory (RRAM) devices were only consisting of one resistor and one corresponding transistor. The subject of this work was to study the characteristics of manganese oxide (MnO) thin films deposited on transparent conductive thin film using the rf magnetron sputtering method. The optimal sputtering conditions of as-deposited manganese oxide (MnO) thin films were the rf power of 80 W, chamber pressure of 20 mTorr, substrate temperature of 580°C, and an oxygen concentration of 40%. The basic mechanisms for the bistable resistance switching were observed. In which, the non-volatile memory and switching properties of the manganese oxide (MnO) thin film structures were reported and the relationship between the memory windows and electrical properties was investigated.


2015 ◽  
Vol 3 (16) ◽  
pp. 4081-4085 ◽  
Author(s):  
Zhonglu Guo ◽  
Linggang Zhu ◽  
Jian Zhou ◽  
Zhimei Sun

Resistance random access memory (RRAM) is known to be a promising candidate for next generation non-volatile memory devices, in which the diffusion of oxygen vacancies plays a key role in resistance switching.


MRS Bulletin ◽  
2001 ◽  
Vol 26 (3) ◽  
pp. 182-189 ◽  
Author(s):  
F.H. Baumann ◽  
D.L. Chopp ◽  
T. Díaz de la Rubia ◽  
G.H. Gilmer ◽  
J.E. Greene ◽  
...  

Metallization is the back end of the integrated-circuit (IC) fabrication process where the transistor interconnections are formed. Figure 1 shows the metallized part of a static random-access memory chip. Metal lines for electrical connections (Al and Cu) in Si devices are deposited as blanket films and then etched or polished away to define the conducting lines.


2015 ◽  
Vol 6 ◽  
pp. 1-4 ◽  
Author(s):  
Yeongkyo Seo ◽  
Xuanyao Fong ◽  
Kon-Woo Kwon ◽  
Kaushik Roy

2021 ◽  
Author(s):  
Alireza Abbasi ◽  
Farbod Setoudeh ◽  
Mohammad Bagher Tavakoli ◽  
Ashkan Horri

Abstract The present paper proposes a six-FinFET two-memcapacitor (6T2MC) non-volatile static random-access memory (NVSRAM). In this design, the two memcapacitors are used as non-volatile memory elements. The proposed cell is flexible against data loss when turned off and offers significant improvement in read and write operations compared to previous NVSRAMs. The performance of the new NVSRAM design is evaluated in terms of read and write operation at particular nanometric feature sizes. Moreover, the proposed 6T2MC cell is compared with 8T2R, 8T1R, 7T1R, and 7T2R cells. The results show that 6T2MC has a 5.50% lower write delay and 98.35% lower read delay compared to 7T2R and 7T1R cells, respectively. The 6T2MC cell exhibits 38.86% lower power consumption and 23.80% lower leakage power than 7T2R and 7T1R cells. The proposed cell is significantly improved in terms of HSNM, RSNM, and WSNM compared to 8T2R, 8T1R, 7T2R, and 7T1R cells, respectively. Important cell parameters, such as power consumption, data read/write delay, and SNM, are significantly improved. The superior characteristics of FinFET over MOSFET and the combination of this technology with memcapacitors lead to significant improvement in the proposed design.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jingjuan Wang ◽  
gang cao ◽  
kaixuan sun ◽  
jinling lan ◽  
Yifei Pei ◽  
...  

The development of conductive bridging random access memory (CBRAM) as an artificial synaptic device is an important step in the realization of an efficient biomimetic neural morphology computing system. In...


Sign in / Sign up

Export Citation Format

Share Document