scholarly journals Reduction of total harmonic distortion of three-phase inverter using alternate switching strategy

Author(s):  
Nur Arifah Ramli ◽  
Auzani Jidin ◽  
Zulhani Rasin ◽  
Tole Sutikno

Alternating current (AC) electrical drives mainly require smaller current (or torque) ripples and lower total harmonic distortion (THD) of voltage for excellent drive performances. Normally, in practice, to achieve these requirements, the inverter needs to be operated at high switching frequency. By operating at high switching frequency, the size of filter can be reduced. However, the inverter which oftenly employs insulated gate bipolar transistor (IGBT) for high power applications cannot be operated at high switching frequency. This is because, the IGBT switching frequency cannot be operated above 50 kHz due to its thermal restrictions. This paper proposes an alternate switching strategy to enable the use of IGBT for operating the inverter at high switching frequency to improve THD performances. In this strategy, each IGBT in a group of switches in the modified inverter circuit will operate the switching frequency at one-fourth of the inverter switching frequency. The alternate switching is implemented using simple analog and digital integrated circuits.

Multilevel inverters are widely used for high power and high voltage applications. The performance of multilevel inverters are superior to conventional two level inverters in terms of reduced total harmonic distortion, higher dc link voltages, lower electromagnetic interference and increased quality in the output voltage waveform. This paper presents a single phase hybrid eleven level multilevel inverter topology with reduced switch count to compensate the above mentioned disadvantages. This paper also presents various high switching frequency based multi carrier pulse width modulation strategies such as Phase Disposition PWM Strategy (PDPWM), Phase Opposition and Disposition PWM Strategy (PODPWM), Alternate Phase opposition Disposition PWM (APODPWM), Carrier Overlapping PWM (COPWM), Variable frequency carrier PWM (VFPWM), Third Harmonic Injection PWM (TFIPWM) applied to the proposed eleven level multilevel inverter and is analyzed for RL load. FFT analysis is carried out and total harmonic distortion, fundamental output voltage are calculated. Simulation is carried out in MATLAB/SMULINK.


Author(s):  
M. H. Yatim ◽  
A. Ponniran ◽  
A. N. Kasiran

<span>This paper presents a proposed modified pulse width modulation – low frequency triangular (MPWM-LFT) switching strategy for minimization of voltage THD with implementation of asymmetric multilevel inverter (AMLI) topology on the reduced number of switching devices (RNSD) circuit structure. Principally, MPWM-LFT able to produce optimum angle of the output voltage level in order to minimize total harmonic distortion (THD). In this study, 5-level reduced number of switching devices circuit structure is selected as a circuit configuration for asymmetric (7-level structure) multilevel inverter. For switching strategy, MPWM used low switching frequency in producing signal and needs higher output voltage levels to achieve low total harmonic distortion. In contrast, sinusoidal pulse width modulation used high switching frequency in order to minimize total harmonic distortion. By optimizing angle at the output voltage using MPWM-LFT switching strategy, the voltage THD is lower as compared to MPWM and SPWM switching strategies. MPWM-LFT switching strategy obtains 11.6% of voltage THD for the 7-level asymmetric topology as compared to MPWM and SPWM switching strategies with the voltage THD are 21.5% and 17.5% respectively from the experimental works.</span>


2013 ◽  
Vol 3 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Yuriy Denisov ◽  
Serhii Stepenko

Abstract The problems, devoted to power quality and particularly power factor correction, are of great importance nowadays. The key requirements, which should be satisfied according to the energy efficiency paradigm, are not limited only by high quality of the output voltage (low total harmonic distortion), but also assume minimal power losses (high efficiency) in the power factor corrector (PFC). It could be satisfied by the use of quasi-resonant pulse converter (QRPC) due to its high efficiency at high switching frequency instead of the classical pulse-width modulated (PWM) boost converter. A dynamic model of QRPC with zero current switching (ZCS) is proposed. This model takes into account the main features of QRPC-ZCS as a link of a PFC closed-loop system (discreteness, sharp changes of parameters over switching period, input voltage impact on the gain). The synthesized model is also valid for conventional parallel pulse converter over an active interval of commutation. The regulator for current loop of PFC was synthesized based on digital filter using proposed model by the criterion of fast acting.


2012 ◽  
Vol 614-615 ◽  
pp. 1539-1546
Author(s):  
Muhamad Fairus Hamid ◽  
Norazlan Hashim ◽  
Ahmad Farid Abidin

This paper presents an analysis and improvement of self-oscillation electronic ballast for local emergency light. The improvement circuit has been presented by replacing the original BJTs with MOSFETs as a switching device. Also, 555-timer has been used to drive the MOSFETs instead of the ballast feedback in the original circuit. This electronic ballast start and regulate fluorescent lamps by converting a DC supply to high ignition AC voltage by a rectifier circuit with switching frequency in the range of 20 kHz -1MHz. Operation at high frequency has two advantages; an improved efficiency and elimination of flickering in the lamps. The simulation has been done by using PSIM Simulink software and its results have been compared with experimental results. The results shows that by using MOSFETs as a switching device, the Total Harmonic Distortion (THD) has been reduced and the brightness of lamp tube has been increased greatly.


2015 ◽  
Vol 793 ◽  
pp. 172-176 ◽  
Author(s):  
M.Z. Aihsan ◽  
R.B. Ali ◽  
M. Othman ◽  
N.A. Rahman ◽  
L.S. Sing

This paper presents a new selective switching strategy for single phase SPWM Inverter that can reduce the power loss and total harmonic distortion. Power loss is always a command issue for inverter system. Power loss occurs during the switching of the inverter. This new selective switching strategy is modified from the typical switching strategy and has been proven to reduce the power loss and harmonics. This project had already been tested on direct power source and also from the solar PV module. This project is focusing on 100W inverter system.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 390
Author(s):  
Ezzidin Hassan Aboadla ◽  
Sheroz Khan ◽  
Kushsairy Abdul Kadir ◽  
Zulkhairi Md Yusof ◽  
Mohamed Hadi Habaebi ◽  
...  

Power electronics devices are made from semiconductor switches such as thyristors, MOSFETs, and diodes, along with passive elements of inductors, capacitors, and resistors, and integrated circuits. They are heavily used in power processing for applications in computing, communication, medical electronics, appliance control, and as converters in high power DC and AC transmission in what is now called harmonized AC/DC networks. A converter’s operation is described as a periodic sequencing of different modes of operation corresponding to different topologies interfaced to filters made of passive elements. The performance of converters has improved considerably using high switching frequency, which leads to a significant improvement in a power converter’s performance. However, the high dv/dt through a fast-switching transient of the MOSFET is associated with parasitic components generating oscillations and voltage spikes having adverse effects on the operation of complementary switches, thereby affecting the safe operation of the power devices. In this paper, the MOSFET gate-driver circuit performance is improved to suppress the H-Bridge inverter’s voltage spikes. The proposed technique is a simple improvement to the gate driver based on the IR2112 driver (IC) by adding a capacitor to attenuate the effect of parasitic components and the freewheeling current, suppressing the negative voltage spikes. This paper’s main contribution is to improve the gate driver circuit’s capability for suppressing the voltage spikes in the H-Bridge inverter. The improved gate driver circuit is validated experimentally and is compared with the conventional gate driver. The experimental results show that the proposed technique can effectively suppress the MOSFET’s voltage spikes and oscillations.


2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840080
Author(s):  
Mingjing Zhai ◽  
Yuan Yang ◽  
Yang Wen ◽  
Wenqing Yao ◽  
Yuan Li

Silicon carbide (SiC) metal-oxide-semiconductor field-effect transistor (MOSFET) can work at high switching frequency with low switching loss compared with Si insulated gate bipolar transistor (IGBT). Although Si IGBT and SiC MOSFET have the same MOS-gate structure, the transient characteristics and the gate driver requirements for Si IGBT and SiC MOSFET are different. In order to fully utilize the advantages of SiC MOSFET, the gate driver of SiC MOSFET needs to be optimized to meet some special driving requirements. The paper aims to analyze the characteristics for the new generation of wide band gap semiconductor device SiC MOSFET and proposes a novel gate driver for SiC MOSFET. Meanwhile, the driving protection circuit of SiC MOSFET is also investigated. The performances of the proposed gate driver have been experimentally evaluated by double pulse test (DPT). In addition, the effect of different external capacitors [Formula: see text] and external driving resistances [Formula: see text] on the switch characteristics of SiC MOSFET is analyzed in detail.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6184
Author(s):  
Roland Kasper ◽  
Dmytro Golovakha

Small sized electric motors providing high specific torque and power are required for many mobile applications. Air gap windings technology allows to create innovative lightweight and high-power electric motors that show low phase inductances. Low inductance leads to a small motor time constant, which enables fast current and torque control, but requires a high switching frequency and short sampling time to keep current ripples and losses in an acceptable range. This paper proposes an optimal torque feedforward control method, minimizing either torque ripples or motor losses, combined with a very robust and computation-efficient modal current feedback control. Compared to well-known control methods based on the Clarke-Park Transformations, the proposed strategy reduces torque ripples and motor losses significantly and offers a very fast implementation on standard microcontrollers with high robustness, e.g., against measurement errors of rotor angle. To verify the accuracy of the proposed control method, an experimental setup was used including a wheel hub motor built with a slotless air gap winding of low inductance, a standard microcontroller and GaN (Gallium Nitride) Power Devices allowing for high PWM switching frequencies. The proposed control method was validated first by correlation of simulation and experimental results and second by comparison to conventional field-oriented control.


Author(s):  
S.Z. Mohammad Noor ◽  
N. Rosmizi ◽  
N. Aminudin ◽  
Faranadia A.H

<p>This work presents investigation of passive filter performance on three-phase inverter with 180° conduction mode. The simulation model of the inverter is developed by using MATLAB/Simulink. The power circuit used Insulated Gate Bipolar Transistor (IGBT) as switching device. The inverter is controlled by using bipolar Sinusoidal Pulse Width Modulation (SPWM) technique. The IGBT was set to 25 kHz for switching frequency (fs). Three types of passive filters which are LC, RC and PI filters are used to investigate the ability to remove the unwanted signal that occurred on the inverter. The result is analyzed based on the performances of output filter in term of Total Harmonic Distortion in voltage (THD<sub>v</sub>), current (THD<sub>i</sub>), shape of output voltage and current. The THD must be less than 5% at rated inverter output voltage or current by referring to IEC 61727 Standard. The passive filter is modeled in MATLAB/Simulink environment to study the characteristics and performance of the filters.</p>


Sign in / Sign up

Export Citation Format

Share Document