scholarly journals Immunomodulatory Activity of Methanol Leaf Extract of Neem (Azadirachta indica Juss) Against Suppressor and Proinflammatory Molecules

2021 ◽  
Vol 11 (3) ◽  
pp. 309-316
Author(s):  
Supriyanto Supriyanto ◽  
◽  
Simon Widjanarko ◽  
Muhaimin Rifa'i ◽  
Yunianta Yunianta ◽  
...  

Neem plant is rich in bioactive constituents, which make it massively discussed the treatment of various diseases. A study on the immunomodulatory activities of neem is given here. This current work aimed to investigate the effects of neem leaf extract on immunocompetent cells. In vivo experiment was carried out using mice (Mus musculus) Â induced with DMBA, comprising positive control, negative control, and treatments of neem leaf extracts (250, 500, and 1000 ppm). Data obtained from flow cytometric analysis were evaluated using BD Cellquest ProTM software, then statistically analyzed in SPSS version 21. Parametric analysis in one-way ANOVA was performed at a significance level of 5%. The significant difference was compared in the Duncan test. The results showed that administration of neem leaf extracts significantly affected the expression of CD4+, CD8+, CD25+, CD62L, IL-10, and IL-17 cells .Neem leaf extract has immunomodulatory activities by increasing pressure molecules and decreasing pro-inflammatory molecules

Author(s):  
Kusmardi Kusmardi ◽  
Arif Ramadhan Tamzir ◽  
Santi Widiasari ◽  
Ari Estuningtyas

Objective: The incidence of small intestine cancer (SIC) is rising despite available preventive measures. Kaempferol and quercetin are a potential chemopreventive agent for SIC, but in vivo findings are inconclusive. We aim to study the effects of kaempferol and quercetin on colitis-associated small intestine carcinogenesis in mice.Methods: Suppression effect was tested using mice divided into 6 groups of treatment, i.e.; normal (N) group, negative control (NC), leaf extract (medium dose [MD]) dose 12.5 and 25 mg/kg body weight (BW), leaf extract chitosan and nanoparticle of mahkota dewa (NPMD) dose 6.25 and 12.5 mg/kg BW. Dextran sulfate sodium induction of 1% w/v was administered through drinking water for 6 weeks of treatment. The suppression effect was observed histopathologically by counting the mitotic cells and hyperplasia cells of the crypt of small intestine with hematoxylin-eosin staining.Results: Mitosis cells mean of NC group was not significant difference either with MD 12.5 (p=0.394) or MD 6.5 (p=0.310). However, mitosis cell mean appears to be lower in the NPMD 12.5 (p=0.09) and NPMD 6.25 (p=0.05) groups than the NC group. There was a significant difference among the mean of hyperplasia NC group and MD and also NPMD group. Significant difference also can be showed between MD 12.5 and MD 25 (p=0.026), and between NPMD 6.25 and NPMD 12.5 (p=0.002), and between MD 12.5 and NPMD 12.5 (p=0.002).Conclusion: Our results demonstrate suppression of hyperplasia small intestine by either nanoparticle or extract of Phaleria macrocarpa extracts. The suppression of mitosis was showed by administration of nanoparticle.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Kalay Hagazy ◽  
Gereziher G. Sibhat ◽  
Aman Karim ◽  
Gebretsadkan H. Tekulu ◽  
Gomathi Periasamy ◽  
...  

Objective. To evaluate the antimalarial effect of aqueous methanolic extract and solvent fractions of Meriandra dianthera leaves against Plasmodium berghei in mice model. Method. M. dianthera leaves were extracted with 80% methanol and dried. The dried crude extract was then defatted and further fractionated with chloroform, ethyl acetate, and butanol. Acute oral toxicity test was performed as per the Organization for Economic Cooperation and Development guideline 425. Peter’s 4-day suppressive test was used to determine the in vivo antimalarial activity of the extract and fractions. Result. The crude leaf extract of Meriandra dianthera showed parasite inhibition of 42.28% and 45.52% at doses of 400 and 600 mg/kg, respectively, as compared to the negative control. Moreover, the mice which received chloroform and aqueous fractions at the dose of 400 mg/kg/day showed significant (P<0.001) chemosuppression compared to the negative control. Both the extract and fractions were able to prevent P. berghei induced body weight loss and body temperature reduction and also increased the survival time of the mice as compared to the negative control. The aqueous methanolic leaf extract of M. dianthera showed no gross signs of toxicity or mortality in mice until a single oral dose of 2000 mg/kg. Conclusion. The extracts of M. dianthera leaves showed promising antimalarial activity, with no sign of toxicity and therefore may support its traditional use for the treatment of malaria.


2015 ◽  
Vol 153 ◽  
pp. 45-54 ◽  
Author(s):  
Alti Dayakar ◽  
Sambamurthy Chandrasekaran ◽  
Jalaja Veronica ◽  
Shyam Sundar ◽  
Radheshyam Maurya

AGRICA ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 32-37
Author(s):  
Yustina M.S.W Puu ◽  
Hildegardis Nalti Nansi

Callosobruchus Chinensis is a pest that damages mung bean seeds in storage and causes damage to both the quality and quantity of seeds. This study aims to determine the effectiveness of neem leaf extracts in suppressing the development of the Callosobruchus Chinensis pest as one of the postharvest pests in the commodity green beans. This research conducted at the Laboratory of the Faculty of Agriculture, University of Flores, by using a Completely Randomized Design (CRD) with five treatments and three replications. The concentration of neem leaf extract treatment is 0 ml / l, 25 ml / l, 30 ml / l, 35 ml / l, and 40 ml / l. The results showed that the concentration of neem leaf extract 40 ml / l caused mortality of C. Chinensis imago as contact poison by 99% and nerve poison by 47%. While the effectiveness of the limb leaf extract on spawning activity was 86%.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 861
Author(s):  
Elizabeth E. Niedert ◽  
Chenghao Bi ◽  
Georges Adam ◽  
Elly Lambert ◽  
Luis Solorio ◽  
...  

A microrobot system comprising an untethered tumbling magnetic microrobot, a two-degree-of-freedom rotating permanent magnet, and an ultrasound imaging system has been developed for in vitro and in vivo biomedical applications. The microrobot tumbles end-over-end in a net forward motion due to applied magnetic torque from the rotating magnet. By turning the rotational axis of the magnet, two-dimensional directional control is possible and the microrobot was steered along various trajectories, including a circular path and P-shaped path. The microrobot is capable of moving over the unstructured terrain within a murine colon in in vitro, in situ, and in vivo conditions, as well as a porcine colon in ex vivo conditions. High-frequency ultrasound imaging allows for real-time determination of the microrobot’s position while it is optically occluded by animal tissue. When coated with a fluorescein payload, the microrobot was shown to release the majority of the payload over a 1-h time period in phosphate-buffered saline. Cytotoxicity tests demonstrated that the microrobot’s constituent materials, SU-8 and polydimethylsiloxane (PDMS), did not show a statistically significant difference in toxicity to murine fibroblasts from the negative control, even when the materials were doped with magnetic neodymium microparticles. The microrobot system’s capabilities make it promising for targeted drug delivery and other in vivo biomedical applications.


Author(s):  
Endang Sri Purwanti Ningsih ◽  
Noorlaila Noorlaila ◽  
Ikhwan Rizki Muhammad ◽  
Windy Yuliana Budianto

Background: The process of wound healing is influenced by various factors such as age, hormones, and wound care. Wound care is done to accelerate wound healing which can be done by various methods, one of them is traditional care. Traditional wound care can use medicinal plants. Rhodomyrtus tomentosa is a medicinal plant that has an antioxidant, anti-inflammatory, antitumor and antibacterial content. Thus this study aims to evaluate the effectiveness of the antiseptic solution of the Rodhomyrtus tomentosa leaf extract on wound healing in male Wistar rats. Method: this research is pure experimental research with post test only control group design. Thirty male white rats were divided into five groups, namely negative control, positive control, Rhodomyrtus tomentosa leaf extract 15%, 30%, and 60%. Rhodomyrtus tomentosa leaf extraction was carried out by maceration method with 70% ethano solvent. The extraction results are divided into 3 concentrations (15%, 30% and 60%). The wound healing process was evaluated by measuring the length of the wound manually from 0 to 10 days in each group. Meanwhile, the number of fibroblast cells was calculated through hematoxylin eosin (HE) staining and observed using an Olympus CX41 microscope with a 10x magnification and objective lens magnification in 3 fields. Result: There was a significant difference in the reduction in wound length (p =< 0,000) between the five experimental groups (Rhodomyrtus tomentosa leaf extract solution 15%, 30% and 60%, negative control and positive control. Solution of rhodomyrtus tomentosa leaf extract accelerated the increase in the number of fibroblasts compared to the negative control group (p = 0.003), but did not make a difference (p = 0.403) with the positive control group. Rhodomyrtus tomentosa leaf extraction solution had the same microscopic effect on the number of fibroblasts with a positive control group given 0.9% NaCl solution. Conclusion: There was a significant difference in the number of fibroblasts between all groups, but no difference in wound healing length.


2015 ◽  
Vol 10 (3) ◽  
pp. 562 ◽  
Author(s):  
Fatema Nasrin ◽  
Md. Lukman Hakim

<p class="Abstract">In this study the antidiarrheal activity of ethanolic extracts of the leaves of <em>Mikania cordata</em> and <em>Litsea monopetala</em> was evaluated. Diarrhea was induced in mice by oral administration of castor oil (0.5 mL) 30 min after the administration of the extracts. During a 4 hour study the number of diarrheal feces and percentage inhibition of the extracts (200 and 400 mg/kg body weight) was determined. Loperamide (3 mg/kg body weight) served as standard and belonged to the positive control group. The extracts exhibited potent antidiarrheal activity as well as achieved statistically significant p value (p&lt;0.01 and p&lt;0.05) compared to control group. Among the extracts the highest percentage inhibition of defecation (60%) was recorded for leaf extract (400 mg/kg body weight) of <em>L. monopetala</em>. So, the study corroborates the significant antidiarrheal activity of <em>M. cordata</em> and <em>L. monopetala</em> leaf extracts and raises the demand of further sophisticated investigation.</p><p> </p>


Author(s):  
Rathnasagar K ◽  
Thiyagaraj Anand

Objectives: The activity of two different leaf extracts of Lantana indica and Vitex negundo is tested against the 3rd and 4th instar Culex quinquefasciatus larvae to evaluate the potency of the extracts as a larvicide and to find an ecologically sustainable alternative to chemical insecticides. A bioinformatics screening approach was performed to evaluate the in vivo results.Methods: The obtained larvae’s from nearby water sources were tested with N, N-diethyl-meta-toluamide (DEET) as the positive control which is the commercial chemical mosquito repellent and the solvents used for the respective plant extracts act as the negative control. Petroleum ether (PE), ethyl acetate (EA) and an aqueous (AQ) extract were prepared for both L. indica and V. negundo extracts, and its larvicidal activity was tested. A docking based approach was used to study the inhibitory effect of known active compounds from L. indica and V. negundo against acetylcholine esterase (AChE) and sterol binding protein as targets.Results: On comparing the results between three plants extract for its larvicidal activity, the EA extract of V. negundo and L. indica is found to be potent with a low LC50 value. Further, the docking studies between active compounds of L. indica and V. negundo with AChE and Sterol binding protein as targets showed that the compound tangeritin-1 had a good docking score compared to DEET and could be a natural alternative for larvicidal activity in the mosquito.Conclusion: Individual activity of tangeritin-1 could be further studied with mosquito mortality studies and molecular simulations and develop tangeritin-1 as a potential larvicidal compound for commercial use.


Author(s):  
Udeme O. Georgewill ◽  
Festus Azibanigha Joseph ◽  
Elias Adikwu

Nitrofurantoin (NT) used for the treatment of urinary tract infections may have antiplasmodial activity. Dihydroartemisinin-piperaquine (DP) is an artemisinin based combination therapy used for the treatment of malaria. This study evaluated the antiplasmodial effect of dihydroartemisinin-piperaquine-nitrofurantoin (DP-NT) on mice infected with Plasmodium berghei. Adult Swiss albino mice (30-35 g) of both sexes were used. The mice were randomly grouped, inoculated with Plasmodium berghei, and treated orally with DP (1.7/13.7 mg/kg), NT (57.1 mg/kg) and DP-NT (1.71/13.7/ 57.1 mg/kg), respectively using curative, prophylactic and suppressive tests. The negative control was orally treated with normal saline (0.3 mL), while the positive control was orally treated with chloroquine CQ (10mg/kg). After treatment, blood samples were collected and evaluated for percentage parasitemia, inhibitions and hematological parameters. Liver samples were evaluated for histological changes. The mice were observed for mean survival time (MST). Treatment with DP-NT decreased parasitemia levels when compared to individual doses of DP and NT with significant difference observed at p<0.05. DP-NT prolonged MST when compared to individual doses of DP and NT with significant difference observed at p<0.05. The decrease in packed cell volume, red blood cells, hemoglobin and increase in white blood cells in parasitized mice were significantly restored by DP-NT  when compared to individual doses of DP and NT with difference observed at p<0.05. DP-NT eradicated liver Plasmodium parasite.  NT remarkably increased the antiplasmodial activity of DP. DP-NT may be used for the treatment of malaria.


2010 ◽  
Vol 8 (1) ◽  
pp. 27-30
Author(s):  
TRI NUGROHO WIBOWO ◽  
DARUKUTNI DARUKUTNI ◽  
SUTARTINAH SRI HANDAYANI

Wibowo TN, Darukutni, Handayani SS. 2010. The mortality effect of castor bean (Ricinus communis) extract on Aedes aegypti larvae. Biofarmasi 8: 77-81. The aim of this research was to determine the mortality effect of Ricinus communis L. extract on Aedes aegypti L. larvae. This research was an laboratory experimental, with a post-test only controlled group design, and used 750 larvae Instar III of A. aegypti L. that divided into 6 groups (control group, and five treatment groups consisted of 0.10% extract, 0.25% extract, 0.50% extract, 0.75% extract and 1% extract). The sampling technical was a purposive sampling method. The larvae were put into 25 ml experimental liquid for 24 hours. The observation was counting a number of dead larvae in 24 hours. Data were analyzed with one-way ANOVA test continued with Least Significant Difference (LSD) using SPSS for Windows Release statistically with a significance level p<0.05 then continued with a probit analysis. There were 0 larva death at negative control, 23.8 (95%) larvae death at 0.10% extract concentration, 24.6 (98%) larvae death at 0.25% extract concentration, 25.0 (100%) larvae death at 0.50%, 0.75% and 1.00% extract concentration. There was a significant difference in larvae death of A. aegypti in all groups. The LC50 of R. communis extract was 0.01036% (103.6 ppm), therefore it could be concluded that R. communis extract had a mortality effect to A. aegypti larvae.


Sign in / Sign up

Export Citation Format

Share Document