scholarly journals Analysis of the use of photosensitization in human glioblastoma multiforme to induce cell death

2019 ◽  
Vol 98 (Suppl) ◽  
pp. 25-25
Author(s):  
Mario Minor Murakami Junior ◽  
Yollanda E. Moreira Franco ◽  
Maurício Da Silva Baptista ◽  
Suely Kazue Nagahashi Marie

Introduction: The most frequent primary tumor of the central nervous system is the malignant glioma, being the glioblastoma (GBM), grade IV astrocytoma, the most aggressive and lethal glioma. Malignant astrocytomas are responsive for therapy targeting autophagy as temozolomide, the standard adjuvant treatment which induces autophagic cell death. Autophagy is a homeostatic intracellular process that eliminate old proteins and recycle cellular components. Mitophagy is a subtype of autophagy that regulates the removal of damaged, dysfunctional or redundant mitochondria. Parallel damage against lysosomes and mitochondria membranes using photosensitized oxidations and strong redox stress leads to activation of mitophagy and malfunction of autophagy. This mechanism of photosensitization, ultimately, causes cell death. Challenging cells with a low concentration of a photosensitizer as 1,9-dimethyl methylene blue (DMMB) combined with light- irradiation of 12 joules/cm2 have induced mitochondrial damage with activation of mitophagy and concomitant lysosome damage, in skin-derived cell lines. This experimental design was applied to U87MG GBM cells to verify if tumor cell death may be obtained with combined mitochondrial and lysosomal damages to open new therapeutic strategies for GBM and to better understand the mechanisms of mitophagy.Objectives: Our primary objective is to analyze the impact of challenging GBM cells with a low concentration of 1,9-dimethyl methylene blue (DMMB) with combined light- irradiation of 12 joules/cm2.Methodology: U87MG a human GBM cell line was used. The photodamage was performed using DMMB photosensitized by a LED with maximum emission wavelength at 630 nm providing 12 J/cm2. Cell proliferation and viability assays were performed using MTT to assess whether there was proliferation inhibition and/or alteration of cell viability after photosensitization. Quantification of cells in different stages of apoptosis, and in the various phases of the cell cycle were analyzed using flow cytometry after photosensitization. Acridine orange assay was used to assess lysosome damage. RT-PCR and Western Blotting were performed to evaluate the expression levels of the main autophagy and mitophagy genes and proteins.Partial Results: Cell proliferation and viability assays demonstrated that the concentration of DMMB to cause 50% inhibition of biological activity of cells (IC50) was 10 nM after 48h. The apoptosis and cell cycle experiments were performed in this concentration. Increase in apoptosis was observed after 24hs of photosensitization. Currently, the cell cycle flow cytometry assay has been performed, followed by the quantification of lysosomes damage by Acridine Orange assay. The genes and proteins involved in the mechanisms of autophagy and mitophagy will be determined by expression analysis through RT-PCR and Western blot assays.Discussion and Conclusion: For a future perspective, if this prove of concept is achieved, i.e. death of tumor cells by the combined approach of photosensitizer with irradiation, a new therapeutic strategy of light-activated drugs may be offered to cancer patients.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10692
Author(s):  
Jie Meng ◽  
Rui Su ◽  
Luping Wang ◽  
Bo Yuan ◽  
Ling Li

Background The bark of Uncaria rhynchophylla has been traditionally used to treat convulsion, bleeding, hypertension, auto-immune conditions, cancer, and other diseases. The main focus of this research is done for the purpose of exploring the antitumor activity and mechanism of action (MOA) for hirsutine isolated from U. rhynchophylla. Methods Jurkat clone E6-1 cells were treated using 10, 25 and 50 μM for 48 h. Inhibition of cell proliferation due to hirsutine treatment was evaluated by CCK8 assay. Flow cytometry was applied to ascertain Jurkat cell cycle progression and apoptosis after treatment with 10, 25 and 50 μM hirsutine for 48 h. The expression and level of the apoptosis-related genes and proteins was analyzed by Real-time Quantitative polymerase chain reaction (qPCR) and Western blotting method, respectively. Results CCK8 analyses revealed that hirsutine could significantly inhibit the proliferation of Jurkat clone E6-1 cells, in a concentration and time-dependent fashion. Flow cytometry assays revealed that hirsutine could drive apoptotic death and G0/G1 phase arrest in Jurkat cells. Apoptotic cells frequencies were 4.99 ± 0.51%, 13.69 ± 2.00% and 40.21 ± 15.19%, and respective cell cycle arrest in G0/G1 accounted for 34.85 ± 1.81%, 42.83 ± 0.70% and 49.12 ± 4.07%. Simultaneously, compared with the control group, Western blot assays indicated that the up-regulation of pro-apoptotic Bax, cleaved-caspase3, cleaved-caspase9 and Cyto c proteins, as well as the down-regulation of Bcl-2 protein which guards against cell death, might be correlated with cell death induction and inhibition of cell proliferation. QPCR analyses indicated that hirsutine could diminish BCL2 expression and, at the same time, improve Bax, caspase-3 and caspase-9 mRNA levels, thus reiterating a putative correlation of hirsutine treatment in vitro with apoptosis induction and inhibition of cell proliferation (p-value < 0.05). Excessive hirsutine damages the ultrastructure in mitochondria, leading to the release of Cyt c from the mitochondria to cytoplasm in Jurkat clone E6-1 cells, thereby inducing the activated caspase cascade apoptosis process through a mitochondria-mediated pathway. Conclusion An important bioactive constituent—hirsutine—appears to have antitumor effects in human T-cell leukemia, thus enlightening the use of phytomedicines as a novel source for tumor therapy. It is speculated that hirsutine may induce apoptosis of Jurkat Clone E6-1 cells through the mitochondrial apoptotic pathway.


Reproduction ◽  
2021 ◽  
Author(s):  
Ourlad Alzeus Gaddi Tantengco ◽  
Talar Kechichian ◽  
Kathleen L Vincent ◽  
Richard B Pyles ◽  
Paul Mark B Medina ◽  
...  

Ureaplasma parvum is a commensal bacterium in the female reproductive tract but has been associated with pregnancy complications such as preterm prelabor rupture of membranes and preterm birth (PTB). However, the pathologic effects of U. parvum in the cervix, that prevents ascending infections during pregnancy, are still poorly understood. To determine the impact of U. parvum on the cervix, ectocervical (ecto) and endocervical (endo) epithelial and stromal cells were incubated with U. parvum. Macrophages were also tested as a proxy for cervical macrophages to determine the antigenicity of U. parvum. The effects of U. parvum, including influence on cell cycle and cell death, antimicrobial peptide production, epithelial-to-mesenchymal transition (EMT), and inflammatory cytokine levels, were assessed. U. parvum colonized cervical epithelial and stromal cells 4 hours post-infection. Like uninfected control, U. parvum neither inhibited cell cycle progression and nor caused cell death in cervical epithelial and stromal cells. U. parvum increased the production of the antimicrobial peptides (AMPs) cathelicidin and human β-defensin 3 and exhibited weak signs of EMT evidenced by decreased cytokeratin 18 and increased vimentin expression in cervical epithelial cells. U. parvum induced a pro-inflammatory environment (cytokines) and increased MMP-9 in cervical epithelial cells but promoted pro- and anti-inflammatory responses in cervical stromal cells and macrophages. U. parvum may colonize the cervical epithelial layer, but induction of AMPs and anti-inflammatory response may protect the cervix and may prevent ascending infections that can cause PTB. These findings suggest that U. parvum is a weak inducer of inflammation in the cervix.


2021 ◽  
Vol 17 (9) ◽  
pp. 1882-1889
Author(s):  
Suqin Wang ◽  
Lina Xu ◽  
Zhiqiang Zhang ◽  
Ping Wang ◽  
Rong Zhang ◽  
...  

Dysregulation expression of miR-375 is noted to correlate with progression of cervical cancer. This study attempted to investigate the impact of overexpressed miR-375-loaded liposome nanoparticles on proliferation of cervical cancer (CC), to provide an insight on pathogenesis of CC disorder. CC cells were co-cultured with pure liposome nanoparticles (empty vector group), miR-375 agonist-loaded liposome nanoparticles, or transfected with miR-375 antagonist. Besides, some cells were exposed to TGF-β/Smads signaling pathway inhibitor or activator whilst cell proliferation was assessed by MTT assay, and expressions of FZD4 and miR-375 were determined. Western blot analysis was carried out to detect the expression of TGF-β pathway factors (TGF-β, Smad2, Smad7, p-Smad2) and its downstream Smads pathway. The interaction between miR-375 and FZD4 was evaluated by dual-luciferase reporter gene assay. Overexpression of miR-375 induced arrest at the G0/G1 phase of cell cycle and elevation of Smad2 protein expression (P <0.05), with lower expressions of TGF-β, Smad7, p-Smad2, and FZD4, while transfection with miR-375 inhibitor exhibited opposite activity. Presence of miR-375 agonist-loaded liposome nanoparticles induced decreased cell proliferation. There was a targeting relationship between miR-375 and FZD4, and administration with TGF-β/Smads agonist resulted in increased miR-375 and Smad2 expressions, as well as decreased TGF-β, Smad7, p-Smad2, FZD4 protein expression, and the number of S phase and G2/M phase cells (P < 0.05). The signaling inhibitor oppositely suppressed cell proliferation decreasing miR-375 expression. miR-375-loaded liposome nanoparticles activated TGF-β/Smads signaling pathway to restrain cell cycle and suppress cell division, and proliferation through targeting FZD4 in CC. Its molecular mechanism is related to activation of TGF-β/Smads signaling pathway.


2020 ◽  
Vol 21 (11) ◽  
pp. 4122 ◽  
Author(s):  
Miao Yu ◽  
Xiaoyan Shi ◽  
Mengmeng Ren ◽  
Lu Liu ◽  
Hao Qi ◽  
...  

Serine-threonine kinase receptor-associated protein (STRAP) functions as a regulator of both TGF-β and p53 signaling that participates in the regulation of cell proliferation and cell death in response to various stresses. Here, we demonstrate that STRAP acetylation plays an important role in p53-mediated cell cycle arrest and apoptosis. STRAP is acetylated at lysines 147, 148, and 156 by the acetyltransferases CREB-binding protein (CBP) and that the acetylation is reversed by the deacetylase sirtuin7 (SIRT7). Hypo- or hyperacetylation mutations of STRAP at lysines 147, 148, and 156 (3KR or 3KQ) influence its activation and stabilization of p53. Moreover, following 5-fluorouracil (5-FU) treatment, STRAP is mobilized from the cytoplasm to the nucleus and promotes STRAP acetylation. Our finding on the regulation of STRAP links p53 with SIRT7 influencing p53 activity and stability.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2506-2506
Author(s):  
Elias Drakos ◽  
Athanasios Thomaides ◽  
Jiang Li ◽  
Marina Konopleva ◽  
L. Jeffrey Medeiros ◽  
...  

Abstract p53 is the most frequently mutated tumor suppressor gene in human cancer. However, in Hodgkin lymphoma (HL) p53 is mutated only in a small subset of cases suggesting that modulation of wild-type-p53 (wt-p53) levels in Hodgkin and Reed-Sternberg (HRS) cells may have therapeutic implications in these patients. MDM2 (HDM2 in humans) is a physiologic negative regulator of p53 levels through a well-established auto-regulatory feedback loop. Nutlin-3A is a recently developed small molecule, which antagonizes mdm2 through disruption of p53-MDM2 interaction resulting in p53 stabilization. We hypothesized that nutlin 3A may stabilize p53 in HRS cells carrying wt-p53 gene, thus leading to p53-dependent apoptosis and G1-S cell cycle arrest. We used two novel classical HL cell lines recently established in our Institution, MDA-V and MDA-E, which have been shown to carry wt-p53 gene. As a control, we used a HL cell line L-428 harboring a mutant p53 (mt-p53) gene product (deletion at exon 4). We investigated effects on apoptosis and cell cycle arrest after treatment of cultured HRS cells with nutlin-3A or a 150-fold less active enantiomere, nutlin-3B. Treatment with nutlin-3A resulted in substantial cell death (up to 65%) in a concentration-dependent manner associated with increased apoptosis as shown by apoptotic morphology (DAPI immunofluorescence), annexin V binding (flow cytometry) and caspase activation (Western blot analysis) in MDA-V and MDA-E cells, but not in L-428 cells. Nutlin-3A-induced apoptotic cell death was accompanied by stabilization of p53 protein as detected by western blot analysis and immunofluorescence and up-regulation of pro-apoptotic Bax, a known target of p53. Inhibition of nuclear export by leptomycin B stabilized p53 at a similar level as compared to nutlin-3A treatment in these cells, suggesting that nutlin-3A stabilized p53 through inhibition of MDM2-mediated degradation of the protein. By contrast, no changes in cell viability, growth or apoptosis were seen after treatment with the inactive nutlin-3B small molecule. Treatment with nutlin-3A also resulted in a significant decrease (up to 85%) of cells in S-phase and a dose-dependent increase of cells in G1 phase of cell cycle as detected by flow cytometry, in MDA-V and MDA-E cells, but not in L-428 cells. Cell cycle arrest was associated with up-regulation of the cyclin-dependent kinase inhibitor p21, a transcriptional target of p53. In contrast, treatment of HRS cells with nutlin-3B had no effects on the cell cycle irrespective of p53 mutation status. Furthermore, combined treatment with nutlin-3A and doxorubicin revealed synergistic effects and enhanced cytotoxicity in HRS cells with wt-p53 gene. Targeting MDM2 with the specific antagonist nutlin-3A that leads to non-genotoxic p53 activation, apoptosis induction and cell cycle inhibition may provide a new therapeutic approach for patients with HL.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3991-3991
Author(s):  
Jie Jin ◽  
Jia-Kun Shen ◽  
Hua-ping Du ◽  
Min Yang ◽  
Yun-Gui Wang

Abstract Casticin, a component from Vitex rotundifolia wich was widely used as an anti-inflammatory agent in Chinese traditional medicine, was reported to have anti-tumor activities in lung cancer and breast cancer. There are yet no reports on roles against acute myelocytic leukemia (AML). This study aims to elucidate the anti-leukemic activity of casticin on AML cells. We investigated the efficient efficacy and the mechanisms by which casticin triggers cell death in AML cells by analyzing cell cycle perturbations, apoptosis-related marker expression. Cell viability was measured by MTT method; apoptosis and cell cycle arrest were determined by flow cytometry and AV-PI assay. Western blot was performed to measure the apoptosis-related marker. Concentration-dependant cell deaths were observed in AML cell lines including K562, U937 and THP-1, with IC50 values of 24h (hours) being 47.4μM, 67.8μM and 61.7μM, respectively. Time-dependant cell deaths were also observed. At the concentration of 20μM casticin, 45.7%, 76.1% and 80.9% of K562 cells were inhibited at 24h, 48h and 72h, respectively; 24.7%, 30% and 61% of U937 cells were inhibited at 24h, 48h and 72h, respectively; while for THP-1, 29%, 41.8% and 53.9% were inhibited at 24h, 48h and 72h, respectively. Apoptosis was found using AV-PI staining by flow cytometry analysis. We observed an obvious G2/M phase increase prolongation in casticin treated K562 cells. BThe distribitions of G2/M phase were 2.9%, 33.6%, 75.3%, 54.9%, 29.7% and 27.0% in K562 cells after treated by 20μM casticin for 0h, 6h, 12h, 24h, 36h and 48h, respectively. Furthermore, apoptosis-related proteins, PARP and caspase 3, were cleaved in casticin treated K562 cells. Taken together, these results demonstrated that casticin can induce leukemic cell death through apoptosis, suggesting that casticin could be a promising therapeutic agent against acute myeloid leukemia.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2848-2848
Author(s):  
Enrico Derenzini ◽  
Daniela Buglio ◽  
Hiroshi Katayama ◽  
Yuan Ji ◽  
Subrata Sen ◽  
...  

Abstract Abstract 2848 Hodgkin Lymphoma (HL) cell proliferation and survival is sustained by a complex network of cytokine signaling, involving the Hodgkin and Reed-Sternberg cells and tumor microenvironment. Following cytokine stimulation, JAK-STAT activation promotes the transcription of target genes involved in proliferation, survival, and immune escape. Programmed Death-ligands 1 and 2 (PD-L1 and PD-L2) and the Th2 chemokine TARC are immune-modulators involved in immune evasion, respectively through inhibition of effector T cell function (PD-L1, PD-L2) and attraction and homing of Th2 cells (TARC). Aurora kinases are frequently overexpressed in human cancers and play essential functions in chromosome alignment and cytokinesis. The role of Aurora kinases in Hodgkin lymphomagenesis is not defined yet. In this study we report the activity profile of the JAK2 inhibitor AZD1480 in HL cell lines (HD-LM2, L-428, KM-H2, L-540). To assess the effect of AZD1480 on cell proliferation, cells were incubated with increasing concentrations of AZD1480 (from 0.1 to 10 μM) for 24, 48 and 72 hours (hrs). A significant growth inhibition was evident after 72 hrs of incubation, specially using the high doses of AZD1480 (5μM). The L-540 cell line showed the highest sensitivity, with a decrease in cell viability close to 50% following incubation with AZD1480 1μM. Inhibition of STAT3, STAT5 and STAT6 phosphorylation in the L-540, L-428 and HD-LM2 cell lines was observed with concentrations equal to 0.1 μM or higher. Using Annexin V- propidium iodide staining, we found that AZD1480 induced cell death by apoptosis in a dose dependent manner after 72 hrs of incubation when a high concentration (5μM) of the drug was used. Lower concentrations of AZD1480 (1μM) promoted a statistically significant increase in cell death only in the L-540 and to a lesser extent in the L-428 cell line. Consistent with this data, also caspase 9, 3 and PARP cleavage was observed in all the cell lines exposed to AZD1480 5 μM. AZD1480 5μM promoted a marked increase in the G2/M fraction in all the cell lines as soon as 24 hrs after incubation, especially in the HD-LM2 and L-428 cell lines. Treatment with lower doses (1μM) did not affect significantly the cell cycle. Since AZD1480 was also reported to inhibit Aurora A kinase at nanomolar concentrations in enzymatic assays, we assessed if the significant increase in the G2/M fraction was related to the inhibition of the Aurora A kinase. We evaluated the levels of autophosphorylation on Thr-288 by western blotting. Cells were pretreated with Nocodazole 400 ng/ml for 18 hrs in order to achieve a mitotic block, and then exposed to AZD1480 (1-5μM) and/or the proteasome inhibitor MG132 (20μM) (in order to prevent the potential overriding of the Nocodazole induced mitotic block), for 3 hours. A dose-dependent inhibition of Aurora A was detected in all the cell lines, with a complete abrogation when higher doses of AZD1480 were used (5μM). These findings are consistent with the analysis of the cell cycle fractions, showing dose-dependent changes of the cell cycle at 24 hrs following incubation with AZD1480. AZD1480 also decreased the secretion of key cytokines involved autocrine and paracrine survival loops and immune escape. Following incubation with AZD1480 1μM for 72 hrs cell culture supernatants were analyzed by ELISA: decreased levels of IL-6, IL-13, TARC, and IL-21 were observed in HD-LM2, L-428 and L-540 cells. Moreover we assessed the expression of PD-L1 and PD-L2 by flow cytometry and observed significant downregulation in the PD-L1/PD-L2 overexpressing cell lines (L-540 and HD-LM2). These data suggest that AZD1480 has a pleiotropic mechanism of action in HL by targeting the JAK-STAT and the Aurora kinase pathway, and by altering the pattern of cytokine and chemokine secretion and the expression of factors involved in immune escape. Our study provides the rationale for further clinical investigation of AZD1480 in HL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 5125-5125
Author(s):  
Cintia Do Couto Mascarenhas ◽  
Anderson Ferreira Cunha ◽  
Ana Flavia Brugnerotto ◽  
Sheley Gambero ◽  
Joao Machado-Neto ◽  
...  

Abstract Abstract 5125 The TOB1 gene is a transcription factor responsible for the transduction of the gene ERBB2. It is a member of a family of cell suppressor proliferation proteins called TOB/BTG1 family; also, this gene operates on the inhibition of neoplastic transformation. The TOB1 gene presents a decreased expression in several types of cancer such as lung, breast, thyroid and stomach cancer. However, the function of this gene in chronic myeloid leukemia (CML) remains unknown. Aiming to evaluate the inhibition of gene TOB1 into BCR-ABL positive cells and trying to elucidate the molecular mechanisms associated with the inhibition of this gene in the CML we proceed to a more detailed study of this gene. The inhibition of this gene in K562 cells was performed using specific lentivirus. The effect of silencing TOB1 in the proliferation of K562 cells was assessed by the MTT assay after 48 hours of culture; in shTOB1 the proliferation was increased in comparison with shControl cells. To evaluate the synergistic effect between the inhibition of kinase tyrosine activity of BCR-ABL and the inhibition of TOB1 we performed a treatment with different concentrations of imatinib (0. 1, 0. 5 and 1μM), but we observed the decrease in cell proliferation of shTOB1 cells to similar levels of shControl cells only at the 1μM concentration. Therefore, the TOB1 silencing increased the proliferation of K562 cells without an additional effect of a treatment with Imatinib. To analyze the clonogenicity, we performed a formation of colonies assay, in methylcellulose, to determine whether silencing TOB1 could cause a change in the clonal growth of positive BCR-ABL cells. There was no significant change in the number of colonies that grew in cell culture shTOB1 compared to shControl cells. These results suggest that silencing TOB1 in K562 cells may not change the clonogenicity. In the assessment of cell cycle, the flow cytometry analysis revealed a significant accumulation of K562 cells in S phase, with consequent reduction of cells in the G2 phase of the cell cycle in cells shTOB1 compared to cells shControl. The TOB1 gene silencing in K562 cells kept the cells in the S phase and prevented the entry of cells in the G2 phase showing that the inhibition of gene TOB1 induced an increase in proliferation of K562 BCR-ABL cells. The level of apoptosis was assessed by flow cytometry after labeling the cells with anexin-V/PI. The Imatinib treatment presented dose-response in the induction of apoptosis as expected. However, a cumulative effect with TOB1 silencing was not observed. Furthermore, the apoptosis was also assessed by assays of caspases 3, 8 and 9, which showed an increase of the caspase activity of shControl cells in relation of the shTOB1 cells, showing that inhibition of this gene also changes the level of apoptosis. These results corroborate the literature data that report the relationship of this tumour suppressor gene in signalling pathways related to angiogenesis, carcinogenesis, apoptosis and metastasis. When we relate the results obtained with the LMC, we can consider the possibility of TOB1 regulation changes be related to modification of important signalling pathways such as AKT, PI3K, STAT3 and STAT5, among others. Furthermore, the inhibition of TOB1 may be related with an increase on the number of BCR-ABL positive cells and subsequent disease progression. In conclusion, this study confirmed literature data showing that TOB1 gene works as a tumour suppressor protein in cells of many types of cancer. From this work we can infer that in CML the expression of this gene is transformed, resulting in changing of the capacity of induction of apoptosis, decrease tumour necrosis and increase cell proliferation. This work was supported by FAPESP and INCT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5085-5085
Author(s):  
Qingxiao Chen ◽  
Jingsong He ◽  
Xing Guo ◽  
Jing Chen ◽  
Xuanru Lin ◽  
...  

Abstract Background: Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults which is still incurable although novel drugs and new combination of chemotherapies are used . With the development of genetic and molecular biology technologies, more and more genes are found to be related to leukemogenesis and drug resistance of AML. TET2, a member of the ten-eleven-translocation gene family which can modify DNA by catalyzing the conversion of 5-mehtyl-cytosine to 5-hydroxymethyl-cytosine , is often inactivated through mutation or deletion in myeloid malignancies. Recent research reported that TET2 knock-down can promote proliferation of hematopoietic stem cells and leukemic cells. Also, several clinical studies showed that patients with TET2 mutation or low levels of TET2 expression have more aggressive disease courses than those with normal levels of TET2. However, the mechanism of the phenomenon is unknown. Our aim is to uncover how TET2 protein level is negatively correlated with AML cell proliferation and to provide a better view of target therapy in AML. Methods: We determined the expression levels of TET2 and other target genes in acute leukemia cell lines, bone marrow AML specimens, and peripheral blood mononuclear cells from healthy donors by qRT-PCR and Western blot. We also determined the mutation status of TET2 in AML cell lines. CCK8 and flow cytometry were used to determine cell proliferation, cell apoptosis, and cell cycle profile. Methylation-specific PCR were used to examine the methylation status in gene promoter regions. Also, we developed TET2 knock-down lentivirus to transfect AML cell lines to examine the effect of TET2 depletion. Last, RNA-seq was used to compare gene expression level changes between TET2 knock-down cell lines and the control cell lines. Results: AML cells from AML cell lines (KG-1,U937, Kasumi, HL-60, THP-1, and MV4-11) and AML patients' specimens expressed lower levels of TET2 than those of PBMC from the healthy donor (P<0.05). Among AML cell lines, U937 barely expressed TET2, while KG-1 expressed TET2 at a relatively higher level than those of other AML cell lines. We constructed a TET2 shRNA to transfect KG-1,THP-1,MV-4-11,Kasumi,and HL-60, and used qRT-PCR and western blot to verify the knock-down efficiency. CCK8 confirmed that knocking down TET2 could increase leukemia cell proliferation (P<0.05). Flow cytometry showed that cell cycle profile was altered in TET2 knock-down cells compared to the negative control cells. In order to identify target genes, we performed RNA-seq on wildtype and TET2 knockdown KG-1 cells and found that the expression of cell cycle related genes, DNA replication related genes, and some oncogenes were changed. We focused on Pim-1, an oncogene related to leukemogenesis, which was significantly up-regulated in the RNA-seq profile. Western blot and qPCR verified the RNA-seq results of Pim-1 expression in the transfected cells . Also, AML patients' bone marrow samples (n=35) were tested by qPCR and 28 of them were found to express low TET2 but high Pim-1 with the other 7 being opposite. For detailed exploration in expression regulation of Pim-1 via TET2, we screened genes affecting Pim-1 expression and found SHP-1, a tumor suppress gene which is often silenced by promoter methylation in AML. Western blot band of SHP-1 was attenuated in TET2 knockdown KG-1 cells. Moreover, methylation-specific PCR showed that after knocking down TET2 in KG-1 cell line, the promoter regions were methylated much more than the control cells. These results indicated that the function of TET2 in epigenetic modulation plays an important role in regulating Pim-1 expression. Finally, using flow cytometry and CCK8 we surprisingly found that knocking down TET2 expression could lead leukemic cells (KG-1, THP-1 and MV-4-11) more sensitive to Pim-1 inhibitor (SGI-1776 free base) and decitabine (a demethylation agent treating MDS and AML) (P<0.05). Conclusion: Our study showed that knocking down TET2 promoted leukemic cell proliferation. This phenomenon may correlate to Pim-1 up-regulation. Our clinical data also showed that the expression of TET2 and Pim-1 have an inverse relationship. The mechanism of TET2 regulating Pim-1 expression may be related to the epigenetic modulation function of TET2. Finally, we found TET2 downregulation could increase leukemia vulnerability to Pim-1 inhibitor and decitbine, and provide a novel view of target therapy in AML. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document