Abstract 451: PNS-R1 Attenuates the Development of Atherosclerosis in ApoE-Deficient Mouse Model

2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Yu Chen ◽  
Chenglin Jia ◽  
Minqi Xiong ◽  
Jingang Cui ◽  
Qinbo Yang ◽  
...  

Atherosclerosis is a chronic pathological condition featured by accumulation of lipids and fibrous elements in the artery. Atherosclerosis remains as the primary cause of cardiovascular diseases and agents that effectively intervenes the development of atherosclerosis are still needed. Panax notoginseng has been extensively used as therapeutic agent in Asia to treat cardiovascular disorders. Panax notoginseng saponins (PNS) is the major class of active components of Panax notoginseng. PNS has been reported to possess anti-atherosclerotic effect. However, which component of PNS is responsible for this effect remains unknown. The current study evaluated the effects of a component unique to PNS, PNS-R1, on atherosclerosis in ApoE-/- mouse model. Histological examination revealed that the extent of atherosclerotic lesion was significantly alleviated in PNS-R1-treated ApoE-/- mice compared to that from the ApoE-/- controls. Meanwhile, PNS-R1 treatment significantly reduced the level of oxidative stress in the atherosclerotic lesion, which was prominently enhanced in ApoE-/- controls. This effect on oxidative stress was corroborated by increased serum level of GSH and SOD and decreased level of MDH in PNS-treated mice. Furthermore, PNS-R1 treatment significantly decreased the levels of total cholesterol, triglycerides and increased the level of HDL without affecting the level of LDL, suggesting an effect of PNS-R1 on lipid metabolism, which could in part contribute to its action in attenuating atherosclerosis. Additionally, the levels of inflammatory factors including IL-2, IL-6, TNF-α, γ-IFN and ox-LDL were markedly reduced in PNS-R1-treated mice compared to that from the ApoE-/- controls, demonstrating a significant anti-inflammatory effect of PNS-R1 in the development of atherosclerosis. Expression of microRNAs known to be involved in the pathogenesis of atherosclerosis was further evaluated and showed that PNS-R1 treatment led to a significant reduction in the expression of miR-122, miR-132 and miR-155. Collectively, our results provided for the first time the experimental evidence supporting the anti-atherosclerotic effects of PNS-R1, which could be a promising therapeutic agent treating atherosclerosis.

2020 ◽  
Author(s):  
Xiaoling Wu ◽  
Xinyu Zou ◽  
Mi Zhang ◽  
Haiqiang Hu ◽  
Xueliang Wei ◽  
...  

Abstract Background: Osteocalcin (OCN), as an energy-regulating hormone, involves in preventing nonalcoholic steatohepatitis. Laying hens have been used as an animal model for investigating liver function and related metabolic disordersas that the synthesis of fat in laying hens is much faster than in mammals with limited adipose tissue. The aim of this study was to investigate the effects of OCN on fatty liver hemorrhagic syndrome (FLHS) in aged laying hens. Methods: Thirty 68-week-old White Plymouth laying hens were randomly assigned into conventional single-bird cages, and the cages were randomly allocated into one of three treatments: normal diet (ND + vehicle , ND+V), high-fat diet (HFD + vehicle, HFD+V), and HFD + OCN (3 μg/bird, 1 time/2 days, i.m.) for 40 days. At experimental day 30, oral glucose tolerance tests (OGTT) and insulin tolerance tests (ITT) were performed. At the end of experiment, the hens were euthanized followed blood collection. The plasma aspartate transaminase (AST), alkaline phosphatase (ALP), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured using an automatic biochemistry analyzer. Pathological changes in the liver were examined under both light and transmission electron microscopes. The plasma inflammatory factors including interleukin-1 (IL-1), IL-6, and tumor Necrosis Factor-alpha (TNF-α) were analyzed by ELISA, and the gene expressions of these inflammatory factors in the liver were analyzed by Real-time PCR. And oxidative stress was evaluated using Malondialdehyde (MDA) and Glutathione peroxidase (GSH-Px) assay kits. Results: The results showed HFD hens had more severe liver haemorrhage and fibrosis than ND hens. The ultra-microstructural examination showed that hepatocytes of HFD hens appeared necrotic pyknosis associated with great intracellular electron, mitochondrial swelling, shrunk nucleus and absence of autolysosomes. OCN mitigated these pathological changes by improved HFD hens’ insulin resistance via alleviating the glucose intolerence and improving insulin sensitivity; inhibited HFD-induced oxidative stress as evidenced by decreased liver concentrations of MDA but increased GSH-Px; and reduced the inflammatory reaction with reducing blood IL-6 and TNF-α concentrations and mRNA expressions. Conclusion: These results suggest a high-fat diet promotes the FLHS development in aged hens, while OCN prevents the FLHS process through inhibiting insulin resistance, inflammatory reaction, oxidative stress and fibrosis, and acting autophagy.


2019 ◽  
Vol 35 (1) ◽  
Author(s):  
Ju-Bin Kang ◽  
Dong-Ju Park ◽  
Murad-Ali Shah ◽  
Myeong-Ok Kim ◽  
Phil-Ok Koh

Abstract Lipopolysaccharide (LPS) acts as an endotoxin, releases inflammatory cytokines, and promotes an inflammatory response in various tissues. This study investigated whether LPS modulates neuroglia activation and nuclear factor kappa B (NF-κB)-mediated inflammatory factors in the cerebral cortex. Adult male mice were divided into control animals and LPS-treated animals. The mice received LPS (250 μg/kg) or vehicle via an intraperitoneal injection for 5 days. We confirmed a reduction of body weight in LPS-treated animals and observed severe histopathological changes in the cerebral cortex. Moreover, we elucidated increases of reactive oxygen species and oxidative stress levels in LPS-treated animals. LPS administration led to increases of ionized calcium-binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP) expression. Iba-1 and GFAP are well accepted as markers of activated microglia and astrocytes, respectively. Moreover, LPS exposure induced increases of NF-κB and pro-inflammatory factors, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Increases of these inflammatory mediators by LPS exposure indicate that LPS leads to inflammatory responses and tissue damage. These results demonstrated that LPS activates neuroglial cells and increases NF-κB-mediated inflammatory factors in the cerebral cortex. Thus, these findings suggest that LPS induces neurotoxicity by increasing oxidative stress and activating neuroglia and inflammatory factors in the cerebral cortex.


2020 ◽  
Vol 53 (1) ◽  
Author(s):  
Jintao Gao ◽  
Fangru Chen ◽  
Huanan Fang ◽  
Jing Mi ◽  
Qi Qi ◽  
...  

Abstract Background Psoriasis is a common chronic inflammatory skin disease. Keratinocytes hyperproliferation and excessive inflammatory response contribute to psoriasis pathogenesis. The agents able to attenuate keratinocytes hyperproliferation and excessive inflammatory response are considered to be potentially useful for psoriasis treatment. Daphnetin exhibits broad bioactivities including anti-proliferation and anti-inflammatory. This study aims to evaluate the anti-psoriatic potential of daphnetin in vitro and in vivo, and explore underlying mechanisms. Methods HaCaT keratinocytes was stimulated with the mixture of IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α (M5) to establish psoriatic keratinocyte model in vitro. Cell viability was measured using Cell Counting Kit-8 (CCK-8). Quantitative Real-Time PCR (qRT-PCR) was performed to measure the mRNA levels of hyperproliferative marker gene keratin 6 (KRT6), differentiation marker gene keratin 1 (KRT1) and inflammatory factors IL-1β, IL-6, IL-8, TNF-α, IL-23A and MCP-1. Western blotting was used to detect the protein levels of p65 and p-p65. Indirect immunofluorescence assay (IFA) was carried out to detect p65 nuclear translocation. Imiquimod (IMQ) was used to construct psoriasis-like mouse model. Psoriasis severity (erythema, scaling) was scored based on Psoriasis Area Severity Index (PASI). Hematoxylin and eosin (H&E) staining was performed to examine histological change in skin lesion. The expression of inflammatory factors including IL-6, TNF-α, IL-23A and IL-17A in skin lesion was measured by qRT-PCR. Results Daphnetin attenuated M5-induced hyperproliferation in HaCaT keratinocytes. M5 stimulation significantly upregulated mRNA levels of IL-1β, IL-6, IL-8, TNF-α, IL-23A and MCP-1. However, daphnetin treatment partially attenuated the upregulation of those inflammatory cytokines. Daphnetin was found to be able to inhibit p65 phosphorylation and nuclear translocation in HaCaT keratinocytes. In addition, daphnetin significantly ameliorate the severity of skin lesion (erythema, scaling and epidermal thickness, inflammatory cell infiltration) in IMQ-induced psoriasis-like mouse model. Daphnetin treatment attenuated IMQ-induced upregulation of inflammatory cytokines including IL-6, IL-23A and IL-17A in skin lesion of mice. Conclusions Daphnetin was able to attenuate proliferation and inflammatory response induced by M5 in HaCaT keratinocytes through suppression of NF-κB signaling pathway. Daphnetin could ameliorate the severity of skin lesion and improve inflammation status in IMQ-induced psoriasis-like mouse model. Daphnetin could be an attractive candidate for future development as an anti-psoriatic agent.


2021 ◽  
Vol 20 (9) ◽  
pp. 1961-1968
Author(s):  
Wei Wei ◽  
Liefeng Ji ◽  
Wanli Duan ◽  
Jiang Zhu

Purpose: To investigate the effect of Klotho and FOXO1/3 on the CH viability in OA.Methods: The survival rate of CHs, Klotho and FOXO1/3 protein expression, and ROS production were measured in the OA cartilages of different degenerative phases. H2O2 was also used to injure CHs, and the cell viability, Klotho and FOXO1/3 expressions, as well as ROS levels were investigated to clarify the effect of exogenic Klotho on the injured CHs. Additionally, in order to verify the role of FOXO1/3 in Klotho-treated CHs, SOD2, GPX1, inflammatory factors, collagen I/II, SOX9, and Runx-2 levels were analyzed by silencing FOXO1 and FOXO3 expression via siRNA transfection.Results: Klotho and FOXO1/3 expressions significantly decreased, and ROS production increased in severely human OA cartilage (p <0.05). Besides, H2O2 affected CHs viability with the suppression of Klotho and FOXO1/3 expression but ROS production was elevated. Exogenic Klotho application partly reversed the injury caused by H2O2. Furthermore, Klotho treatment of the injured CHs contributed to SOD2 and GPX1 expressions, and suppressed IL-1β, IL-6, TNF-α and MMP-13 production, resulting in  the upregulation of collagen II and SOX9 as well as downregulation of collagen I and Runx-2. However, the protective effect of Klotho was weakened by FOXO1 and FOXO3 gene silencing.Conclusion: Klotho protects CHs viability by suppressing oxidative stress and inflammation, which is associated with the mediation of FOXO1 and FOXO3. These findings provide new insights into the treatment of OA.


2021 ◽  
pp. 1-10
Author(s):  
Ke Sun ◽  
Xiaojing Tang ◽  
Shuwei Song ◽  
Yuan Gao ◽  
Hongjing Yu ◽  
...  

<b><i>Introduction:</i></b> Cardiovascular disease is the most common cause of morbidity and mortality in patients with ESRD. In addition to phosphate overload, oxalate, a common uremic toxin, is also involved in vascular calcification in patients with ESRD. The present study investigated the role and mechanism of hyperoxalemia in vascular calcification in mice with uremia. <b><i>Methods:</i></b> A uremic atherosclerosis (UA) model was established by left renal excision and right renal electrocoagulation in apoE<sup>−/−</sup> mice to investigate the relationship between oxalate loading and vascular calcification. After 12 weeks, serum and vascular levels of oxalate, vascular calcification, inflammatory factors (TNF-α and IL-6), oxidative stress markers (malondialdehyde [MDA], and advanced oxidation protein products [AOPP]) were assessed in UA mice. The oral oxalate-degrading microbe <i>Oxalobacter formigenes</i> (<i>O. formigenes</i>) was used to evaluate the effect of a reduction in oxalate levels on vascular calcification. The mechanism underlying the effect of oxalate loading on vascular calcification was assessed in cultured human aortic endothelial cells (HAECs) and human aortic smooth muscle cells (HASMCs). <b><i>Results:</i></b> Serum oxalate levels were significantly increased in UA mice. Compared to the control mice, UA mice developed more areas of aortic calcification and showed significant increases in aortic oxalate levels and serum levels of oxidative stress markers and inflammatory factors. The correlation analysis showed that serum oxalate levels were positively correlated with the vascular oxalate levels and serum MDA, AOPP, and TNF-α levels, and negatively correlated with superoxide dismutase activity. The <i>O. formigenes</i> intervention decreased serum and vascular oxalate levels, while did not improve vascular calcification significantly. In addition, systemic inflammation and oxidative stress were also improved in the <i>O. formigenes</i> group. In vitro, high concentrations of oxalate dose-dependently increased oxidative stress and inflammatory factor expression in HAECs, but not in HASMCs. <b><i>Conclusions:</i></b> Our results indicated that hyperoxalemia led to the systemic inflammation and the activation of oxidative stress. The reduction in oxalate levels by <i>O. formigenes</i> might be a promising treatment for the prevention of oxalate deposition in calcified areas of patients with ESRD.


2019 ◽  
Vol 20 (12) ◽  
pp. 2951 ◽  
Author(s):  
Fan Yao ◽  
Qiang Xue ◽  
Ke Li ◽  
Xinxin Cao ◽  
Liwei Sun ◽  
...  

We conducted this study for the first time to evaluate changes in the composition and contents of phenolic compounds and ginsenosides in ginseng shoot extracts (GSEs) prepared with different steaming times (2, 4, and 6 h) at 120 °C, as well as their antioxidant and anti-inflammatory activities in lipopolysaccharide (LPS)-induced RAW264.7 mouse macrophages (RAW264.7 cells). The results show that total phenol and flavonoid contents were both significantly higher in steamed versus raw GSEs, and the same trend was found for 2,2′-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2′-azobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) scavenging capacities. Among the 18 ginsenosides quantified using high-performance liquid chromatography (HPLC) with the aid of pure standards, polar ginsenosides were abundant in raw GSEs, whereas less-polar or rare ginsenosides appeared after steaming at 120 °C and increased with steaming time. Furthermore, steamed GSEs exhibited a greater ability to inhibit the production of inflammatory mediators and pro-inflammatory cytokines, such as nitric oxide (NO), interleukin (IL)-6, and tumor necrosis factor (TNF)-α in LPS-induced RAW264.7 cells at the same concentration. Relative expression levels of inducible nitric oxide synthase (iNOS), IL-6, TNF-α, and cyclooxygenase-2 (COX-2) mRNAs were attenuated by the GSEs, probably due to the enrichment of less-polar ginsenosides and enhanced antioxidant activity in steamed GSEs. These findings, combined with correlation analysis, showed that less-polar ginsenosides were major contributors to the inhibition of the overproduction of various inflammatory factors, while the inhibitory effects of total phenols and total flavonoids, and their antioxidant abilities, are also important.


2022 ◽  
Vol 12 ◽  
Author(s):  
Xiangyu Fan ◽  
Zichen Liu ◽  
Zhibin Wan ◽  
Hanlu Zou ◽  
Mengzhi Ji ◽  
...  

BackgroundInduced by the pathogen Mycobacterium tuberculosis, tuberculosis remains one of the most dangerous infectious diseases in the world. As a special virus, prophage is domesticated by its host and are major contributors to virulence factors for bacterial pathogenicity. The function of prophages and their genes in M. tuberculosis is still unknown.MethodsRv2650c is a prophage gene in M. tuberculosis genome. We constructed recombinant Mycobacterium smegmatis (M. smegmatis) to observe bacteria morphology and analyze the resistance to various adverse environments. Recombinant and control strains were used to infect macrophages, respectively. Furthermore, we performed ELISA experiments of infected macrophages.ResultsRv2650c affected the spread of colonies of M. smegmatis and enhanced the resistance of M. smegmatis to macrophages and various stress agents such as acid, oxidative stress, and surfactant. ELISA experiments revealed that the Rv2650c can inhibit the expression of inflammatory factors TNF-α, IL-10, IL-1β, and IL-6.ConclusionThis study demonstrates that the prophage gene Rv2650c can inhibit the spread of colonies and the expression of inflammatory factors and promote intracellular survival of M. smegmatis. These results build the foundation for the discovery of virulence factors of M. tuberculosis, and provide novel insights into the function of the prophage in Mycobacterium.


2018 ◽  
Vol 46 (4) ◽  
pp. 1628-1642 ◽  
Author(s):  
Hany H. Arab ◽  
Samir A. Salama ◽  
Ibrahim A. Maghrabi

Background/Aims: The clinical utility of 5-fluorouracil (5-FU) is limited by its nephrotoxicity. Camel milk (CM) has previously displayed beneficial effects in toxicant-induced nephropathies. The current study aimed to investigate the potential of CM to attenuate 5-FU-induced nephrotoxicity in rats. Methods: Renal tissues were studied in terms of oxidative stress, inflammation and apoptosis. The levels of renal injury markers, inflammatory cytokines along with NOX-1, Nrf-2 and HO-1 were assessed by ELISA. The expression of MMP-2, MMP-9, NF-κBp65, p53, Bax and PCNA were detected by Immunohistochemistry. To gain an insight into the molecular signaling mechanisms, we determined the effect of CM on MAPKs, NF-κB and PI3K/Akt/eNOS pathways by Western blotting. Results: CM lowered 5-FU-triggered increase of creatinine, BUN, Kim-1 and NGAL renal injury biomarkers and attenuated the histopathological aberrations. It suppressed oxidative stress and augmented renal antioxidant armory (GSH, SOD, GPx, TAC) with restoration of NOX-1, Nrf-2 and HO-1 levels. CM also suppressed renal inflammation as indicated by inhibition of MPO, TNF-α, IL-1β, IL-18 and MCP-1 proinflammatory mediators and downregulation of MMP-2 and MMP-9 expression with boosting of IL-10. Regarding MAPKs signaling, CM suppressed the phosphorylation of p38 MAPK, JNK1/2 and ERK1/2 and inhibited NF-κB activation. For apoptosis, CM downregulated p53, Bax, CytC and caspase-3 proapoptotic signals with enhancement of Bcl-2 and PCNA. It also enhanced PI3K p110α, phospho-Akt and phospho-eNOS levels with augmentation of renal NO, favoring cell survival. Equally important, CM preconditioning enhanced 5-FU cytotoxicity in MCF-7, HepG-2, HCT-116 and PC-3 cells, thus, justifying their concomitant use. Conclusion: The current findings pinpoint, for the first time, the marked renoprotective effects of CM that were mediated via ROS scavenging, suppression of MAPKs and NF-κB along with activation of PI3K/Akt/eNOS pathway.


Author(s):  
Bijan Helli ◽  
Hadis Gerami ◽  
Maria Kavianpour ◽  
Habib Heybar ◽  
Seyed Kianoosh Hosseini ◽  
...  

Background: Curcumin demonstrated many pharmacological effects including antioxidants, anti-inflammation, eliminating free radicals, anti-tumor, lipid regulation, and anti-coagulation. Objective: This study aimed to assess and compare curcumin and nano-curcumin effects on lipid profile, oxidative stress, and inflammatory factors related to patients ‘heart. Method: This randomized, double-blind, placebo-controlled clinical trial was conducted on 90 patients undergoing coronary elective angioplasty which were randomly divided into 3 groups. The doses administered for 8 weeks were a 500 mg capsule of curcumin daily for the first group and an 80 mg capsule of nano-curcumin for the second group. However, the placebo group received capsules like curcumin. Lipid profile, oxidative stress factors, and inflammatory markers were measured at the baseline and end of the experiment. Results: Statistically significant changes were observed in the total cholesterol (TC), triacylglycerol (TG) and low-density lipoprotein cholesterol (LDL-C) in the intervention groups to the control group (p<0.05). Curcumin and nano-curcumin supplementation also improved significant changes in plasma levels of total antioxidant capacity (TAC), malondialdehyde (MDA), Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), high-sensitivity C-reactive protein (hs-CRP), Interleukin 1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) in comparison to the placebo (p<0.05). Furthermore, the nano-curcumin group compared to the curcumin group demonstrated significant changes (p<0.05) in TC, TG, SOD, MDA and TNF-α levels. Conclusion: The effects of curcumin on nano formula may be better for cardiac patients due to its high bioavailability.


F1000Research ◽  
2022 ◽  
Vol 10 ◽  
pp. 1161
Author(s):  
Mirasari Putri ◽  
Bening Mauliddina Rastiarsa ◽  
Raden Aliya T. M. Djajanagara ◽  
Ghaliby Ardhia Ramli ◽  
Neni Anggraeni ◽  
...  

Background: Sepsis causes several immunological and metabolic alterations that induce oxidative stress. The modulation of fatty acid-binding protein 4 (FABP4) has been shown to worsen this condition. Extract of cogon grass root (ECGR) contains flavonoids and isoeugenol compounds that exhibit anti-inflammatory and antioxidant properties. This study aimed to assess the effects of ECGR on FABP4 and oxidative stress–related factors in a sepsis mouse model. Methods: Twenty-nine male mice (Mus musculus) of the Deutsche Denken Yoken strain were divided into four groups: group 1, control; group 2, mice treated with 10 μL/kg body weight (BW) lipopolysaccharide (LPS); and groups 3 and 4, mice pre-treated with 90 and 115 mg/kg BW, respectively, and then treated with 10 μL/kg BW LPS for 14 d. Blood, liver, lymph, and cardiac tissue samples were collected and subjected to histological and complete blood examinations. Antioxidant (Glutathione peroxidase 3 (GPx3) and superoxide dismutase), FABP4 levels, and immune system-associated biomarker levels (TNF-α, IL-6 and IL-1β ) were measured. Results: Significant increases in platelet levels (p = 0.03), cardiomyocyte counts (p =0.004), and hepatocyte counts (p = 0.0004) were observed in group 4 compared with those in group 2. Conversely, compared with those in group 2, there were significant decreases in TNF-α expression in group 3 (p = 0.004), white pulp length and width in group 4 (p = 0.001), FABP4 levels in groups 3 and 4 (p = 0.015 and p = 0.012, respectively), lymphocyte counts in group 4 (p = 0.009), and monocyte counts (p = 0.000) and polymorphonuclear cell counts in the livers (p = 0.000) and hearts (p = 0.000) of groups 3 and 4. GPx3 activity was significantly higher in group 3 than in group 1 (p = 0.04). Conclusions: ECGR reduces FABP4 level and modulating oxidative stress markers in sepsis mouse model.


Sign in / Sign up

Export Citation Format

Share Document