scholarly journals Chronobiological Influence Over Cardiovascular Function

2020 ◽  
Vol 126 (2) ◽  
pp. 258-279 ◽  
Author(s):  
Samir Rana ◽  
Sumanth D. Prabhu ◽  
Martin E. Young

Essentially all biological processes fluctuate over the course of the day, observed at cellular (eg, transcription, translation, and signaling), organ (eg, contractility and metabolism), and whole-body (eg, physical activity and appetite) levels. It is, therefore, not surprising that both cardiovascular physiology (eg, heart rate and blood pressure) and pathophysiology (eg, onset of adverse cardiovascular events) oscillate during the 24-hour day. Chronobiological influence over biological processes involves a complex interaction of factors that are extrinsic (eg, neurohumoral factors) and intrinsic (eg, circadian clocks) to cells. Here, we focus on circadian governance of 6 fundamentally important processes: metabolism, signaling, electrophysiology, extracellular matrix, clotting, and inflammation. In each case, we discuss (1) the physiological significance for circadian regulation of these processes (ie, the good); (2) the pathological consequence of circadian governance impairment (ie, the bad); and (3) whether persistence/augmentation of circadian influences contribute to pathogenesis during distinct disease states (ie, the ugly). Finally, the translational impact of chronobiology on cardiovascular disease is highlighted.

2014 ◽  
Vol 67 (8) ◽  
pp. 656-660 ◽  
Author(s):  
Sumit Sahni ◽  
Angelica M Merlot ◽  
Sukriti Krishan ◽  
Patric J Jansson ◽  
Des R Richardson

The BECN1 gene encodes the Beclin-1 protein, which is a well-established regulator of the autophagic pathway. It is a mammalian orthologue of the ATG6 gene in yeast and was one of the first identified mammalian autophagy-associated genes. Beclin-1 interacts with a number of binding partners in the cell which can lead to either activation (eg, via PI3KC3/Vps34, Ambra 1, UV radiation resistance-associated gene) or inhibition (eg, via Bcl-2, Rubicon) of the autophagic pathway. Apart from its role as a regulator of autophagy, it is also shown to effect important biological processes in the cell such as apoptosis and embryogenesis. Beclin-1 has also been implicated to play a critical role in the pathology of a variety of disease states including cancer, neurological disorders (eg, Alzheimer's disease, Parkinson's disease) and viral infections. Thus, understanding the functions of Beclin-1 and its interactions with other cellular components will aid in its development as an important therapeutic target for future drug development.


2022 ◽  
Author(s):  
Yanli Xiang ◽  
Thomas Sapir ◽  
Pauline Rouillard ◽  
Marina Ferrand ◽  
Jose M Jimenez-Gomez

Many biological processes follow circadian rhythmicity and are controlled by the circadian clock. Predictable environmental changes such as seasonal variation in photoperiod can modulate circadian rhythms, allowing organisms to adjust to the time of the year. Modification of circadian clocks is especially relevant in crops to enhance their cultivability in specific regions by changing their sensibility to photoperiod. In tomato, the appearance of mutations in EMPFINDLICHER IM DUNKELROTEN LICHT 1 (EID1, Solyc09g075080) and NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED GENE 2 (LNK2, Solyc01g068560) during domestication delayed its circadian rhythms, and allowed its expansion outside its equatorial origin. Here we study how variation in circadian rhythms in tomato affects its perception of photoperiod. To do this, we create near isogenic lines carrying combinations of wild alleles of EID1 and LNK2 and perform transcriptomic profiling under two different photoperiods. We observe that EID1, but not LNK2, has a large effect on the tomato transcriptome and its response to photoperiod. This large effect of EID1 is likely a consequence of the global phase shift elicited by this gene in tomato's circadian rhythms.


2018 ◽  
Author(s):  
Fergal J Duffy ◽  
Ethan G. Thompson ◽  
Thomas J. Scriba ◽  
Daniel E Zak

AbstractBackgroundCurrent diagnostics are inadequate to meet the challenges presented by coinfection with Mycobacterium tuberculosis (Mtb) and HIV, the leading cause of death for HIV-infected individuals. Improved characterisation of Mtb/HIV coinfection as a distinct disease state may lead to better identification and treatment of affected individuals.MethodsFour previously published TB and HIV co-infection related datasets were used to train and validate multinomial machine learning classifiers that simultaneously predict TB and HIV status. Classifier predictive performance was measured using leave-one-out cross validation on the training set and blind predictive performance on multiple test sets using area under the ROC curve (AUC) as the performance metric. Linear modelling of signature gene expression was applied to systematically classify genes as TB-only, HIV-only or combined TB/HIV.ResultsThe optimal signature discovered was a single 10-gene random forest multinomial signature that robustly discriminates active tuberculosis (TB) from other non-TB disease states with improved performance compared with previously published signatures (AUC: 0. 87), and specifically discriminates active TB/HIV co-infection from all other conditions (AUC: 0.88). Signature genes exhibited a variety of transcriptional patterns including both TB-only and HIV-only response genes and genes with expression patterns driven by interactions between HIV and TB infection states, including the CD8+ T-cell receptor LAG3 and the apoptosis-related gene CERKL.ConclusionsBy explicitly including distinct disease states within the machine learning analysis framework, we developed a compact and highly diagnostic signature that simultaneously discriminates multiple disease states associated with Mtb/HIV co-infection. Examination of the expression patterns of signature genes suggests mechanisms underlying the unique inflammatory conditions associated with active TB in the presence of HIV. In particular, we observed that disregulation of CD8+ effector T-cell and NK-cell associated genes may be an important feature of Mtb/HIV co-infection.


2021 ◽  
Vol 2021 ◽  
pp. 1-34
Author(s):  
Luciano Curcio ◽  
Laura D'Orsi ◽  
Andrea De Gaetano

Although mathematical modelling of pressure-flow dynamics in the cardiocirculatory system has a lengthy history, readily finding the appropriate model for the experimental situation at hand is often a challenge in and of itself. An ideal model would be relatively easy to use and reliable, besides being ethically acceptable. Furthermore, it would address the pathogenic features of the cardiovascular disease that one seeks to investigate. No universally valid model has been identified, even though a host of models have been developed. The object of this review is to describe several of the most relevant mathematical models of the cardiovascular system: the physiological features of circulatory dynamics are explained, and their mathematical formulations are compared. The focus is on the whole-body scale mathematical models that portray the subject’s responses to hypovolemic shock. The models contained in this review differ from one another, both in the mathematical methodology adopted and in the physiological or pathological aspects described. Each model, in fact, mimics different aspects of cardiocirculatory physiology and pathophysiology to varying degrees: some of these models are geared to better understand the mechanisms of vascular hemodynamics, whereas others focus more on disease states so as to develop therapeutic standards of care or to test novel approaches. We will elucidate key issues involved in the modeling of cardiovascular system and its control by reviewing seven of these models developed to address these specific purposes.


2019 ◽  
Vol 20 (11) ◽  
pp. 2765 ◽  
Author(s):  
Jihwan Myung ◽  
Mei-Yi Wu ◽  
Chun-Ya Lee ◽  
Amalia Ridla Rahim ◽  
Vuong Hung Truong ◽  
...  

The kidney harbors one of the strongest circadian clocks in the body. Kidney failure has long been known to cause circadian sleep disturbances. Using an adenine-induced model of chronic kidney disease (CKD) in mice, we probe the possibility that such sleep disturbances originate from aberrant circadian rhythms in kidney. Under the CKD condition, mice developed unstable behavioral circadian rhythms. When observed in isolation in vitro, the pacing of the master clock, the suprachiasmatic nucleus (SCN), remained uncompromised, while the kidney clock became a less robust circadian oscillator with a longer period. We find this analogous to the silencing of a strong slave clock in the brain, the choroid plexus, which alters the pacing of the SCN. We propose that the kidney also contributes to overall circadian timekeeping at the whole-body level, through bottom-up feedback in the hierarchical structure of the mammalian circadian clocks.


2013 ◽  
Vol 42 (5) ◽  
pp. 2803-2819 ◽  
Author(s):  
Chien-Hua Peng ◽  
Yi-Zhi Jiang ◽  
An-Shun Tai ◽  
Chun-Bin Liu ◽  
Shih-Chi Peng ◽  
...  

Abstract Deciphering the causal networks of gene interactions is critical for identifying disease pathways and disease-causing genes. We introduce a method to reconstruct causal networks based on exploring phenotype-specific modules in the human interactome and including the expression quantitative trait loci (eQTLs) that underlie the joint expression variation of each module. Closely associated eQTLs help anchor the orientation of the network. To overcome the inherent computational complexity of causal network reconstruction, we first deduce the local causality of individual subnetworks using the selected eQTLs and module transcripts. These subnetworks are then integrated to infer a global causal network using a random-field ranking method, which was motivated by animal sociology. We demonstrate how effectively the inferred causality restores the regulatory structure of the networks that mediate lymph node metastasis in oral cancer. Network rewiring clearly characterizes the dynamic regulatory systems of distinct disease states. This study is the first to associate an RXRB-causal network with increased risks of nodal metastasis, tumor relapse, distant metastases and poor survival for oral cancer. Thus, identifying crucial upstream drivers of a signal cascade can facilitate the discovery of potential biomarkers and effective therapeutic targets.


2013 ◽  
Vol 52 (1) ◽  
pp. R1-R16 ◽  
Author(s):  
Anthony H Tsang ◽  
Johanna L Barclay ◽  
Henrik Oster

In most species, endogenous circadian clocks regulate 24-h rhythms of behavior and physiology. Clock disruption has been associated with decreased cognitive performance and increased propensity to develop obesity, diabetes, and cancer. Many hormonal factors show robust diurnal secretion rhythms, some of which are involved in mediating clock output from the brain to peripheral tissues. In this review, we describe the mechanisms of clock–hormone interaction in mammals, the contribution of different tissue oscillators to hormonal regulation, and how changes in circadian timing impinge on endocrine signalling and downstream processes. We further summarize recent findings suggesting that hormonal signals may feed back on circadian regulation and how this crosstalk interferes with physiological and metabolic homeostasis.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Fanglei Zhuang ◽  
Ryan T. Fuchs ◽  
G. Brett Robb

Eukaryotic regulatory small RNAs (sRNAs) play significant roles in many fundamental cellular processes. As such, they have emerged as useful biomarkers for diseases and cell differentiation states. sRNA-based biomarkers outperform traditional messenger RNA-based biomarkers by testing fewer targets with greater accuracy and providing earlier detection for disease states. Therefore, expression profiling of sRNAs is fundamentally important to further advance the understanding of biological processes, as well as diagnosis and treatment of diseases. High-throughput sequencing (HTS) is a powerful approach for both sRNA discovery and expression profiling. Here, we discuss the general considerations for sRNA-based HTS profiling methods from RNA preparation to sequencing library construction, with a focus on the causes of systematic error. By examining the enzymatic manipulation steps of sRNA expression profiling, this paper aims to demystify current HTS-based sRNA profiling approaches and to aid researchers in the informed design and interpretation of profiling experiments.


2005 ◽  
Vol 10 (2_suppl) ◽  
pp. S83-S87 ◽  
Author(s):  
Sidney M Morris

Arginine metabolism plays a major role in cardiovascular physiology and pathophysiology, largely via nitric oxide (NO)-dependent processes. It is becoming increasingly apparent, however, that arginine metabolic enzymes other than the NO synthases can also play important roles via both NO-dependent and -independent processes. There are three sources of arginine in vivo and at least five mammalian enzymes or enzyme families that utilize arginine as substrate. Changes in arginine availability or in production of the different end products of the various arginine metabolic pathways can have distinct and profound physiologic consequences. However, our knowledge regarding the complex interplay between these pathways at the level of the whole body, specific tissues, and even individual cells, is incomplete. This review will highlight recent findings in this area that may suggest additional avenues of investigation that will allow a fuller understanding of cardiovascular physiology in health and disease.


Sign in / Sign up

Export Citation Format

Share Document