Abstract TMP26: Binding of KLF4 and HDAC2 to The Promoter Region of SM22alpha Mediates Phenotypic Modulation In vitro and In vivo: Implications in Cerebral Aneurysm Formation

Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Robert M Starke ◽  
Muhammad S Ali ◽  
Stavropoula I Tjoumakaris ◽  
Pascal M Jabbour ◽  
L. Fernando Gonzalez ◽  
...  

Cerebral Vascular Smooth Muscle Cell (VSMC) phenotypic modulation appears to play an important role in cerebral aneurysm formation and progression, yet the molecular mechanisms involved remain unknown. We investigated the role of inflammatory cytokine, Tumor Necrosis Factor-alpha (TNF-α) and cigarette smoke in directly mediating phenotypic modulation in VSMC. We hypothesize that this may, in part, occur through the binding of the transcription factor, KLF4, to the promoter region of SM22alpha, thereby downregulating VSMC differentiation and contractile genes. This may be critical in the pathogenesis of cerebral aneurysm formation. Methods: Cultured cerebral VSMC from rat Circle of Willis were treated with increasing doses of TNF-α (10ng/ml & 50ng/ml) and cigarette smoke extract (CSE; 10ug/ml & 40ug/ml) from 2 to 24hrs. VSMC were transfected with siRNA specific to KLF4. In vivo experiments included application of pluronic gel (containing TNF-α & CSE) to rat carotid artery adventitia. Expression of SM22alpha and KLF4 was measured with qPCR. Chromatin Immunoprecipitation (ChIP) was performed both in vitro and in vivo after treatment (TNF-α and CSE) and incubation with anti-KLF4, anti-HDAC2, anti-H4Ac and anti-H3K9Ac. Results: Both TNF-α and CSE independently suppress SM22alpha and increase expression of KLF4 in vitro and in vivo. siKLF4 inhibits the effects of TNF-α and CSE on KLF4 and SM22alpha. ChIP assays demonstrate that KLF4 binds directly to the promoter region of SM22alpha and further recruits HDAC2 to the promoter region. This complex leads to histone modifications leading to decreased acetylation of H4 and H3K9, resulting in decreased expression of SM22alpha. Conclusion: KLF4 is a key mediator of TNF-α and CSE induced phenotypic modulation of cerebral VSMC. Phenotypic modulation has been implicated in cerebral aneurysm formation in humans. KLF4 dependent regulation of cerebral VSMC phenotypic modulation may be an underlying molecular mechanism involved in the pathogenesis of cerebral aneurysm formation and a target for future therapies.

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Zhenling Zhang ◽  
Lijing Zhang ◽  
Qiuping Zhang ◽  
Bojia Liu ◽  
Fang Li ◽  
...  

Background. Intestinal barrier injury is an important contributor to many diseases. We previously found that heme oxygenase-1 (HO-1) and carbon monoxide (CO) protect the intestinal barrier. This study is aimed at elucidating the molecular mechanisms of HO-1/CO in barrier loss. Materials and Methods. We induced gut leakiness by injecting carbon tetrachloride (CCl4) to wildtype or intestinal HO-1-deficient mice. In addition, we administrated tumor necrosis factor-α (TNF-α) to cells with gain- or loss-of-HO-1 function. The effects of HO-1/CO maintaining intestinal barrier integrity were investigated in vivo and in vitro. Results. Cobalt protoporphyrin and CO-releasing molecule-2 alleviated colonic mucosal injury and TNF-α levels; upregulated tight junction (TJ) expression; and inhibited epithelial IκB-α degradation and phosphorylation, NF-κB p65 phosphorylation, long MLCK expression, and MLC-2 phosphorylation after administration of CCl4. Zinc protoporphyrin completely reversed these effects. These findings were further confirmed in vitro, using Caco-2 cells with gain- or loss-of-HO-1-function after TNF-α. Pretreated with JSH-23 (NF-κB inhibitor) or ML-7 (long MLCK inhibitor), HO-1 overexpression prevented TNF-α-induced TJ disruption, while HO-1 shRNA promoted TJ damage even in the presence of JSH-23 or ML-7, thus suggesting that HO-1 dependently protected intestinal barrier via the NF-κB p65/MLCK/p-MLC-2 pathway. Intestinal HO-1-deficient mice further demonstrated the effects of HO-1 in maintaining intestinal barrier integrity and its relative mechanisms. Alleviated hepatic fibrogenesis and serum ALT levels finally confirmed the clinical significance of HO-1/CO repairing barrier loss in liver injury. Conclusion. HO-1/CO maintains intestinal barrier integrity through the NF-κB/MLCK pathway. Therefore, the intestinal HO-1/CO-NF-κB/MLCK system is a potential therapeutic target for diseases with a leaky gut.


2001 ◽  
Vol 69 (4) ◽  
pp. 2025-2030 ◽  
Author(s):  
Shuhua Yang ◽  
Shunji Sugawara ◽  
Toshihiko Monodane ◽  
Masahiro Nishijima ◽  
Yoshiyuki Adachi ◽  
...  

ABSTRACT Teichuronic acid (TUA), a component of the cell walls of the gram-positive organism Micrococcus luteus (formerlyMicrococcus lysodeikticus), induced inflammatory cytokines in C3H/HeN mice but not in lipopolysaccharide (LPS)-resistant C3H/HeJ mice that have a defect in the Toll-like receptor 4 (TLR4) gene, both in vivo and in vitro, similarly to LPS (T. Monodane, Y. Kawabata, S. Yang, S. Hase, and H. Takada, J. Med. Microbiol. 50:4–12, 2001). In this study, we found that purified TUA (p-TUA) induced tumor necrosis factor alpha (TNF-α) in murine monocytic J774.1 cells but not in mutant LR-9 cells expressing membrane CD14 at a lower level than the parent J774.1 cells. The TNF-α-inducing activity of p-TUA in J774.1 cells was completely inhibited by anti-mouse CD14 monoclonal antibody (MAb). p-TUA also induced interleukin-8 (IL-8) in human monocytic THP-1 cells differentiated to macrophage-like cells expressing CD14. Anti-human CD14 MAb, anti-human TLR4 MAb, and synthetic lipid A precursor IVA, an LPS antagonist, almost completely inhibited the IL-8-inducing ability of p-TUA, as well as LPS, in the differentiated THP-1 cells. Reduced p-TUA did not exhibit any activities in J774.1 or THP-1 cells. These findings strongly suggested that M. luteus TUA activates murine and human monocytic cells in a CD14- and TLR4-dependent manner, similar to LPS.


2004 ◽  
Vol 50 (11) ◽  
pp. 2136-2140 ◽  
Author(s):  
Marie Bennermo ◽  
Claes Held ◽  
Sten Stemme ◽  
Carl-Göran Ericsson ◽  
Angela Silveira ◽  
...  

Abstract Background: A single-nucleotide polymorphism (SNP) in the promoter region of the interleukin-6 (IL-6) gene at position −174 (G>C) has been reported to be associated with a variety of major diseases, such as Alzheimer disease, atherosclerosis, and cardiovascular disease, cancer, non-insulin-dependent diabetes mellitus, osteoporosis, sepsis, and systemic-onset juvenile chronic arthritis. However, authors of previous in vitro and in vivo studies have reported conflicting results regarding the functionality of this polymorphism. We therefore aimed to clarify the role of the −174 SNP for the induction of IL-6 in vivo. Methods: We vaccinated 20 and 18 healthy individuals homozygous for the −174 C and G alleles, respectively, with 1 mL of Salmonella typhii vaccine. IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) were measured in the blood at baseline and up to 24 h after vaccination. Results: Individuals with the G genotype had significantly higher plasma IL-6 values at 6, 8, and 10 h after vaccination than did individuals with the C genotype (P <0.005). There were no differences between the two genotypes regarding serum concentrations of IL-1β and TNF-α before or after vaccination. Conclusions: The −174 G>C SNP in the promoter region of the IL-6 gene is functional in vivo with an increased inflammatory response associated with the G allele. Considering the central role of IL-6 in a variety of major diseases, the present finding might be of major relevance.


Antioxidants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 412
Author(s):  
Fadia S. Youssef ◽  
Mohamed L. Ashour ◽  
Hesham A. El-Beshbishy ◽  
Abdel Nasser B. Singab ◽  
Michael Wink

LC-ESI-MS (Liquid Chromatography coupled with Electrospray Ionization Mass Spectrometry profiling of a methanol extract from Buddleia indica (BIM) leaves revealed 12 main peaks in which verbascoside and buddlenoid B represent the major compounds. The antioxidant and hepatoprotective activities of BIM were investigated using different in vitro and in vivo experimental models. BIM exhibited substantial in vitro antioxidant properties in DPPH· and HepG2 assays. Regarding CCl4 (carbon tetrachloride) induced hepatotoxicity in a rat model, oxidative stress markers became significantly ameliorated after oral administration of BIM. Lipid peroxide levels showed a 51.85% decline relative to CCl4-treated rats. Super oxide dismutase (SOD), total antioxidant status (TAS), and catalase (CAT) revealed a marked increase by 132.48%, 187.18%, and 114.94% relative to the CCl4 group. In a tamoxifen-induced hepatotoxicity model, BIM showed a considerable alleviation in liver stress markers manifested by a 46.06% and 40% decline in ALT (Alanine Transaminase) and AST (Aspartate Transaminase) respectively. Thiobarbituric acid reactive substances (TBARS) were reduced by 28.57% and the tumor necrosis factor alpha (TNF-α) level by 50%. A virtual screening of major secondary metabolites of BIM to TNF-alpha employing the C-docker protocol showed that gmelinoside H caused the most potent TNF- α inhibition as indicated from their high fitting scores. Thus, BIM exhibited a potent hepatoprotective activity owing to its richness in antioxidant metabolites.


1999 ◽  
Vol 67 (1) ◽  
pp. 244-252 ◽  
Author(s):  
Jindrich Soltys ◽  
Mark T. Quinn

ABSTRACT Leukocytes activated by endotoxin or enterotoxins release proinflammatory cytokines, thereby contributing to the cascade of events leading to septic shock. In the present studies, we analyzed the effects of in vivo administration of a soluble immunomodulator, β-(1,6)-branched β-(1,3)-glucan (soluble β-glucan), on toxin-stimulated cytokine production in monocytes and lymphocytes isolated from treated mice. In vitro stimulation of lymphocytes isolated from soluble β-glucan-treated mice with lipopolysaccharide (LPS) resulted in enhanced production of interleukin-6 (IL-6) and suppressed production of tumor necrosis factor alpha (TNF-α), while stimulation of these cells with staphylococcal enterotoxin B (SEB) or toxic shock syndrome toxin 1 (TSST-1) resulted in enhanced production of gamma interferon (IFN-γ) and suppressed production of IL-2 and TNF-α compared to that in cells isolated from untreated mice. In vitro stimulation of monocytes isolated from soluble β-glucan-treated mice with LPS also resulted in suppressed TNF-α production, while stimulation of these cells with SEB or TSST-1 resulted in suppressed IL-6 and TNF-α production compared to that in cells isolated from untreated mice. Thus, the overall cytokine pattern of leukocytes from soluble β-glucan-treated mice reflects suppressed production of proinflammatory cytokines, especially TNF-α. Taken together, our results suggest that treatment with soluble β-glucan can modulate the induction cytokines during sepsis, resulting in an overall decrease in host mortality.


1998 ◽  
Vol 66 (11) ◽  
pp. 5372-5378 ◽  
Author(s):  
Claudia R. Amura ◽  
R. Silverstein ◽  
D. C. Morrison

ABSTRACT It is thought that lipopolysaccharide (LPS) from gram-negative bacteria contributes significantly to the pathogenesis of septic shock. In vitro studies to address the mechanisms involved in this process have often investigated human monocytes or mouse macrophages, since these cells produce many of the mediators found in septic patients. Targeting of these mediators, especially tumor necrosis factor alpha (TNF-α), has been pursued as a means of reducing mortality in sepsis. Two experimental approaches were designed to test the assumption that in vitro studies with macrophages accurately predict in vivo mechanisms of LPS pathogenesis. In the first approach, advantage was taken of the fact that on consecutive days after injection of thioglycolate into mice, increased numbers of macrophages could be harvested from the peritoneum. These cells manifested markedly enhanced levels of in vitro TNF-α, interleukin 6 (IL-6), and nitric oxide production in response to LPS. In d-galactosamine-sensitized mice, however, thioglycolate treatment significantly decreased mortality due to LPS, as well as levels of circulating TNF-α and IL-6. Anti-TNF-α treatment confirmed this cytokine’s role in the observed lethality. In a second experimental approach, we compared the mouse macrophage-stimulating potencies of different LPS preparations with their lethalities to mice. In these studies, the in vitro macrophage-stimulating profiles presented by rough-LPS and smooth-LPS preparations were the reverse of their relative lethal potencies in vivo. In conclusion, peritoneal macrophages appear not to be the major cells responsible for the overall host response during endotoxic shock. These findings underscore the importance of verifying the correlation of in vivo systems with in vitro systems when attributing specific functions to a cell type.


2018 ◽  
Vol 92 (19) ◽  
Author(s):  
Jordan Ari Schwartz ◽  
Hongliang Zhang ◽  
Zachary Ende ◽  
Martin J. Deymier ◽  
Terry Lee ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infection often arises from a single transmitted/founder (TF) viral variant among a large pool of viruses in the quasispecies in the transmitting partner. TF variants are typically nondominant in blood and genital secretions, indicating that they have unique traits. The plasmacytoid dendritic cell (pDC) is the primary alpha interferon (IFN-α)-producing cell in response to viral infections and is rapidly recruited to the female genital tract upon exposure to HIV-1. The impact of pDCs on transmission is unknown. We investigated whether evasion of pDC responses is a trait of TF viruses. pDCs from healthy donors were stimulated in vitro with a panel of 20 HIV-1 variants, consisting of one TF variant and three nontransmitted (NT) variants each from five transmission-linked donor pairs, and secretion of IFN-α and tumor necrosis factor alpha (TNF-α) was measured by enzyme-linked immunosorbent assay (ELISA). No significant differences in cytokine secretion in response to TF and NT viruses were observed, despite a trend toward enhanced IFN-α and TNF-α production in response to TF viruses. NT viruses demonstrated polarization toward production of either IFN-α or TNF-α, indicating possible dysregulation. Also, for NT viruses, IFN-α secretion was associated with increased resistance of the virus to inactivation by IFN-α in vitro, suggesting in vivo evolution. Thus, TF viruses do not appear to preferentially subvert pDC activation compared to that with nontransmitted HIV-1 variants. pDCs may, however, contribute to the in vivo evolution of HIV-1. IMPORTANCE The plasmacytoid dendritic cell (pDC) is the first cell type recruited to the site of HIV-1 exposure; however, its contribution to the viral bottleneck in HIV-1 transmission has not been explored previously. We hypothesized that transmitted/founder viruses are able to avoid the pDC response. In this study, we used previously established donor pair-linked transmitted/founder and nontransmitted (or chronic) variants of HIV-1 to stimulate pDCs. Transmitted/founder HIV-1, instead of suppressing pDC responses, induced IFN-α and TNF-α secretion to levels comparable to those induced by viruses from the transmitting partner. We noted several unique traits of chronic viruses, including polarization between IFN-α and TNF-α production as well as a strong relationship between IFN-α secretion and the resistance of the virus to neutralization. These data rule out the possibility that TF viruses preferentially suppress pDCs in comparison to the pDC response to nontransmitted HIV variants. pDCs may, however, be important drivers of viral evolution in vivo.


1996 ◽  
Vol 270 (1) ◽  
pp. H183-H193 ◽  
Author(s):  
R. M. Binns ◽  
S. T. Licence ◽  
A. A. Harrison ◽  
E. T. Keelan ◽  
M. K. Robinson ◽  
...  

The endothelial molecule E-selectin binds most leukocyte subsets in vitro. Yet its role in regulating the very different kinetics of inflammatory infiltration of different leukocyte subsets in vivo is unclear. The kinetics of E-selectin upregulation and polymorphonuclear leukocyte (PMN) and blood lymphocyte (PBL) localization in inflammation induced by interleukin-1 alpha (IL-1 alpha), tumor necrosis factor-alpha (TNF-alpha), phytohemagglutinin (PHA), and phorbol myristate acetate (PMA) were investigated in a well-established inbred pig trafficking model. They differed markedly both for these three labeled indicators of inflammation and in each of the four inflammatory processes. In each, E-selectin upregulation correlated with early PMN entry and later with PBL infiltration but was more protracted than both. The importance of E-selectin was confirmed by marked inhibition of PMN and PBL entry (up to > 60%) by F(ab')2 anti-E-selectin. Involvement of other molecules was illustrated by similar or greater inhibition with anti-CD18 F(ab')2. We conclude that, like CD18, E-selectin is necessary for most PMN and PBL infiltration but alone is insufficient, consistent with the involvement of several alternative multistep molecular mechanisms in this entry.


1998 ◽  
Vol 42 (11) ◽  
pp. 2824-2829 ◽  
Author(s):  
Seiichi Kobayashi ◽  
Tsutomu Kawata ◽  
Akifumi Kimura ◽  
Kaname Miyamoto ◽  
Koichi Katayama ◽  
...  

ABSTRACT As a consequence of blood-borne bacterial sepsis, endotoxin or lipopolysaccharide (LPS) from the cell walls of gram-negative bacteria can trigger an acute inflammatory response, leading to a series of pathological events and often resulting in death. To block this inflammatory response to endotoxin, a novel lipid A analogue, E5531, was designed and synthesized as an LPS antagonist, and its biological properties were examined in vitro and in vivo. In murine peritoneal macrophages, E5531 inhibited the release of tumor necrosis factor alpha (TNF-α) by Escherichia coli LPS with a 50% inhibitory concentration (IC50) of 2.2 nM, while E5531 elicited no significant increases in TNF-α on its own. In support of a mechanism consistent with antagonism of binding to a cell surface receptor for LPS, E5531 inhibited equilibrium binding of radioiodinated LPS ([125I]2-(r-azidosalicylamido)-1, 3′-dithiopropionate-LPS) to mouse macrophages with an IC50 of 0.50 μM. E5531 inhibited LPS-induced increases in TNF-α in vivo when it was coinjected with LPS into C57BL/6 mice primed with Mycobacterium bovis bacillus Calmette-Guérin (BCG). In this model, the efficacy of E5531 was inversely correlated to the LPS challenge dose, consistent with a competitive antagonist-like mechanism of action. Blockade of the inflammatory response by E5531 could further be demonstrated in other in vivo models: E5531 protected BCG-primed mice from LPS-induced lethality in a dose-dependent manner and suppressed LPS-induced hepatic injury in Propionibacterium acnes-primed or galactosamine-sensitized mice. These results argue that the novel synthetic lipid A analogue E5531 can antagonize the action of LPS in in vitro and suppress the pathological effects of LPS in vivo in mice.


Sign in / Sign up

Export Citation Format

Share Document