Paeoniflorin and albiflorin regulate P-gp-mediated aconitine and hypaconitine transport through an Madin Darby canine kidney-multi drug resistance protein 1 cell model

2021 ◽  
Vol 11 (8) ◽  
pp. 1394-1401
Author(s):  
Yun-Feng Liu ◽  
Yong-Mei Guan ◽  
Shi-Yu Huang ◽  
Lu Wu ◽  
Wei-Feng Zhu ◽  
...  

Aconitine and hypaconitine are the main active ingredients of Radix Aconiti, paeoniflorin and albiflorin are the primary components of Radix Paeoniae Alba. Both Radix Aconiti and Radix Paeoniae Alba are herbs that are commonly used in traditional Chinese medicine. This study sought to explore the mechanistic transport of aconitine and hypaconitine across MDCK-MDR1 cells and to assess the effect of paeoniflorin and albiflorin on aconitine and hypaconitine transmembrane transport as a potential attenuation mechanism. Drug cytotoxicity was tested via the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and transport studies were performed in both directions. The effects of drugs on P-gp ATPase activity, P-gp efflux function, MDR1 mRNA and P-gp expression were evaluated in MDCK-MDR1 cells. Aconitine and hypaconitine treatment with the verapamil could significantly decrease the efflux rate (ER). The ER of aconitine and hypaconitine were significantly increased with the coadministration of paeoniflorin and albiflorin, suggesting that paeoniflorin and albiflorin can promote the efflux of these two alkaloids. Aconitine and hypaconitine can induce P-gp enzymatic activity, inhibit P-gp-mediated efflux, and downregulate the expression of P-gp protein to produce cytotoxic effects. When treatment in combination with paeoniflorin and albiflorin, it could stimulated P-gp ATPase activity, increasing mRNA expression, enhance P-gp efflux function, and upregulate P-gp protein expression.

2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Li-Li Liu ◽  
Yong-Mei Guan ◽  
Xue-Ping Lu ◽  
Xin-Li Liang ◽  
Li-Hua Chen

Semen Strychni has been extensively used as a Chinese herb, but its therapeutic window is narrowed by the strong toxicity of the compound, which limits its effectiveness. Radix Paeoniae Alba has been reported to reduce the toxic effects and increase the therapeutic effects of Semen Strychni, but the underlying mechanism remains unknown. This research aimed to explore the mechanism through which P-glycoprotein (P-gp) is modulated by Semen Strychni combined with Radix Paeoniae Alba in vitro. An MTT assay was used to study cytotoxicity in an MDCK-MDR1 cell model. Rh123 efflux and accumulation were measured to assess P-gp function. The expression levels of MDR1 mRNA and P-gp protein in MDCK-MDR1 cells were investigated. A P-gp ATPase activity assay kit was applied to detect the effect on P-gp ATPase activity. Semen Strychni combined with Radix Paeoniae Alba could induce P-gp-mediated drug transport by inhibiting brucine and strychnine transport in MDCK-MDR1 cells, enhancing the P-gp efflux function, upregulating the P-gp expression and MDR1 mRNA levels, and stimulating P-gp ATPase activity.


2022 ◽  
Vol 12 (2) ◽  
pp. 306-315
Author(s):  
Jie Song ◽  
Cheng Chen ◽  
Hui Zhang

Osteoarthritis (OA) is a chronic and inflammatory disease, leading to pain or even disability in severe cases. LncRNA PCGEM1 (PCGEM1) is reported to be dysregulated, serving as critical regulators in various human diseases, including OA. However, the biological role of PCGEM1 and its underlying mechanisms during OA remained unclear. In the present study, CHON-001 cells were exposed to interleukin (IL)-1β to construct the OA cell model. Expression of PCGEM1 and miR-152-3p in cells was determined by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Corresponding commercial kits were used to measure the expressions of lactate dehydrogenase (LDH), inter-leukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α. Protein levels of apoptosis-related proteins, cleaved-Caspase3 and Caspase3, were detected by Western blotting. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) tetrazolium (MTT) and flow cytometry assays were utilized for the determination of cell proliferation and apoptosis. The association between PCGEN1 and miR-152-3p was confirmed by a dual-luciferase reporter assay. From the results, PCGEM1 expression was significantly increased while miR-152-3p was inhibited in CHON-001 cells after IL-1β treatment. In addition, silencing of PCGEM1 could promote proliferation, inhibit the apoptosis, suppress LDH level and alleviate inflammation response caused by IL-1β in CHON-001 cells by sponging miR-152-3p. In a word, PCGEM1 down-regulation suppressed OA progression by the regulation of miR-152-3p expression, functioning as a potential therapeutic target for OA clinical treatment.


2014 ◽  
Vol 17 (4) ◽  
pp. 447 ◽  
Author(s):  
Liang Li ◽  
Tao Yi ◽  
Christopher Wai-kei Lam

PURPOSE: This study investigated influences of concentration and combination of excipients, commonly used in self-emulsifying drug delivery systems (SEDDS), on inhibition of human efflux transporter ABCC2 (MRP2). METHODS: Ten commonly used excipients of SEDDS with inhibitory effect on MRP2 including Cremophor® EL, Cremophor® RH, Pluronic® F127, Maisine® 35-1, β-cyclodextrin, Labrasol®, Pluronic® F68, PEG 2000, PEG 400 and Transcutol® were studied with the Caco-2 cell model. Six excipients with inhibitory effect including Cremophor® EL, Cremophor® RH, Pluronic® F127, PEG 2000, PEG 400 and Transcutol® were further analyzed using the MRP2 vesicle assay and ATPase activity assay. Ultra-performance liquid-chromatography tandem mass spectrometry was used to measure scutellarin as the MRP2 substrate. RESULTS: In studying concentration-dependent effects, five excipients including Cremophor® EL, Cremophor® RH, Pluronic® F127, Maisine® 35-1 and β-cyclodextrin showed concentration-dependent decrease in efflux ratio of scutellarin. The other five excipients did not show such phenomenon, and their inhibitory effects were restricted to be above to certain critical or minimum concentrations. In studying combined effects, PEG 2000 and Pluronic® F127 both showed combined effect with Cremophor® EL on inhibiting MRP2. However, some combinations of excipients such as PEG 400 and Transcutol® with Cremophor® EL increased the scutellarin efflux ratio and decreased the transport of scutellarin and ATPase activity, compared to Cremophor® EL alone. CONCLUSION: The above results suggest that appropriate choice of excipients according to their concentration-dependent and combined effects on MRP2 inhibition can facilitate formulation of SEDDS for improving the bioavailability of drugs that are MRP2 substrates. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 421
Author(s):  
Yao Yu ◽  
Yang Tian ◽  
Hui Zhang ◽  
Qingxian Jia ◽  
Xuejun Chen ◽  
...  

Meloxicam (MLX) is a non-steroidal anti-inflammatory drug used to treat rheumatoid arthritis and osteoarthritis. However, its poor water solubility limits the dissolution process and influences absorption. In order to solve this problem and improve its bioavailability, we prepared it in nanocrystals with three different particle sizes to improve solubility and compare the differences between various particle sizes. The nanocrystal particle sizes were studied through dynamic light scattering (DLS) and laser scattering (LS). Transmission electron microscopy (TEM) was used to characterize the morphology of nanocrystals. The sizes of meloxicam-nanocrystals-A (MLX-NCs-A), meloxicam-nanocrystals-B (MLX-NCs-B), and meloxicam-nanocrystals-C (MLX-NCs-C) were 3.262 ± 0.016 μm, 460.2 ± 9.5 nm, and 204.9 ± 2.8 nm, respectively. Molecular simulation was used to explore the distribution and interaction energy of MLX molecules and stabilizer molecules in water. The results of differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) proved that the crystalline state did not change in the preparation process. Transport studies of the Caco-2 cell model indicated that the cumulative degree of transport would increase as the particle size decreased. Additionally, plasma concentration–time curves showed that the AUC0–∞ of MLX-NCs-C were 3.58- and 2.92-fold greater than those of MLX-NCs-A and MLX-NCs-B, respectively. These results indicate that preparing MLX in nanocrystals can effectively improve the bioavailability, and the particle size of nanocrystals is an important factor in transmission and absorption.


2015 ◽  
Vol 40 (5) ◽  
pp. 503-514 ◽  
Author(s):  
GB Eyüboğlu ◽  
C Yeşilyurt ◽  
M Ertürk

SUMMARY Objectives To evaluate the cytotoxic effects of the dentin desensitizing products (DDPs) used in the treatment of dentin hypersensitivity on cultured human gingival and pulpal fibroblast cells. Methods and Materials The cytotoxic effects of DDPs (Smart Protect, Systemp Desensitizer, Seal & Protect, Aqua-Prep F, Isodan, Gluma, BisBlock, D/Sense Crystal, UltraEZ, Colgate Sensitive Pro-Relief, Topex, and Clinpro White Varnish) on cultured human gingival- and pulp-derived fibroblast cells were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test (Serva, Heidelberg, Germany) under two different conditions. In the first test, different dilutions of the DDPs were directly applied onto cultured gingival fibroblast cells, and in the second test, the products were applied onto different-thickness dentin discs (0.5 and 1 mm) placed above cell culture medium, which contained pulp fibroblast cells. Results According to the cytotoxicity evaluations of gingival fibroblast cells, the cytotoxicity of all of the DDPs was very high at 50% concentrations (p<0.05). Colgate Sensitive Pro-Relief, Clinpro White Varnish, and Topex showed higher cytotoxicity than did the other products (p<0.05), decreasing with further dilutions, and these products were found to be less cytotoxic to both types of cells (p<0.05) than were the other products with further dilutions. The cytotoxicity to human gingival and pulpal fibroblast cells of Systemp Desensitizer, Aqua-Prep F, Isodan, and Gluma did not show any decrease with further dilutions, and these products were found to be more cytotoxic than the other products (p<0.05). Conclusions According to the findings of this study, Colgate Sensitive Pro-Relief, Topex, and Clinpro White Varnish were less cytotoxic than the other DDPs used in this study.


2018 ◽  
Vol 45 (4) ◽  
pp. 1515-1528 ◽  
Author(s):  
Pranav Gupta ◽  
Yun-Kai Zhang ◽  
Xiao-Yu Zhang ◽  
Yi-Jun Wang ◽  
Kimberly W. Lu ◽  
...  

Background/Aims: The overexpression of ATP-Binding Cassette (ABC) transporters has known to be one of the major obstacles impeding the success of chemotherapy in drug resistant cancers. In this study, we evaluated voruciclib, a CDK 4/6 inhibitor, for its chemo-sensitizing activity in ABCB1- and ABCG2- overexpressing cells. Methods: Cytotoxicity and reversal effect of voruciclib was determined by MTT assay. The intracellular accumulation and efflux of ABCB1 and ABCG2 substrates were measured by scintillation counter. The effects on expression and intracellular localization of ABCB1 and ABCG2 proteins were determined by Western blotting and immunofluorescence, respectively. Vanadate-sensitive ATPase assay was done to determine the effect of voruciclib on the ATPase activity of ABCB1 and ABCG2. Flow cytometric analysis was done to determine the effect of voruciclib on apoptosis of ABCB1 and ABCG2-overexpressing cells and docking analysis was done to determine the interaction of voruciclib with ABCB1 and ACBG2 protein. Results: Voruciclib significantly potentiated the effect of paclitaxel and doxorubicin in ABCB1-overexpressing cells, as well as mitoxantrone and SN-38 in ABCG2-overexpressing cells. Voruciclib moderately sensitized ABCC10- overexpressing cells to paclitaxel, whereas it did not alter the cytotoxicity of substrates of ABCC1. Furthermore, voruciclib increased the intracellular accumulation and decreased the efflux of substrate anti-cancer drugs from ABCB1- or ABCG2-overexpressing cells. However, voruciclib did not alter the expression or the sub-cellular localization of ABCB1 or ABCG2. Voruciclib stimulated the ATPase activity of both ABCB1 and ABCG2 in a concentration-dependent manner. Lastly, voruciclib exhibited a drug-induced apoptotic effect in ABCB1- or ABCG2- overexpressing cells. Conclusion: Voruciclib is currently a phase I clinical trial drug. Our findings strongly support its potential use in combination with conventional anti-cancer drugs for cancer chemotherapy.


2020 ◽  
Vol 14 (5) ◽  
pp. 616-623
Author(s):  
Yun-Feng Liu ◽  
Yong-Mei Guan ◽  
Shi-Yu Huang ◽  
Lu Wu ◽  
Wei-Feng Zhu ◽  
...  

This research sought to study the influence and potentialmechanism of paeoniflorin and albiflorin on strychnine and brucine transport in MDCK-MDR1 cells regulated by P-gp. Cytotoxicity of drugs was tested by MTT assay, and the transport studies were performed in both directions in MDCK-MDR1 cells. The influence of drugs on P-gp ATPase, and the efflux function of P-gp, the expression levels of P-gp and MDR1 mRNA were also estimated. Strychnine and brucine showed well absorption, and the main transport mechanism might be passive diffusion. Verapamil could significantly decrease the efflux rate (ER) of strychnine and brucine, while the ER of strychnine and brucine was increased significantly when co-administrated with paeoniflorin or albiflorin, indicating that paeoniflorin and albiflorin could promote the efflux of these two alkaloids. Strychnine and brucine could activate the activity of P-gp ATPase, suppress the efflux function of P-gp, but have no significant effect on the expression of P-gp. In addition, strychnine could upregulate the expression of MDR1 mRNA. Paeoniflorin and albiflorin could increase the transmembrane transport of strychnine and brucine mediated by P-gp when co-administrated with strychnine or brucine via stimulating the activity of P-gp ATPase, enhancing the efflux function of P-g, increasing the expression levels of MDR1 mRNA and P-gp.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3264 ◽  
Author(s):  
Chao Guo ◽  
Fangyuan Liu ◽  
Jie Qi ◽  
Jiahui Ma ◽  
Shiqi Lin ◽  
...  

10-oxo-5-(3-(pyrrolidin-1-yl) propyl)-5,10-dihydroindeno [1,2-b] indol-9-yl propionate (LS-2-3j) is a new chemically synthesized indole compound and some related analogues are known to be inhibitors (such as alectinib and Ko143) of ATP-binding cassette (ABC) transporters, especially the ABC transporter subfamily B member 1 (ABCB1) and the ABC transporter subfamily G member 2 (ABCG2). This study aimed to evaluate the multidrug resistance (MDR) reversal effects and associated mechanisms of LS-2-3j in drug-resistant cancer cells. The inhibition of cell proliferation in tested agents was evaluated by the 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay. Accumulation or efflux of chemotherapy drugs was analyzed by flow cytometry. The ATPase activity was measured using an ATPase activity assay kit. The mRNA transcripts and protein expression levels were detected by real-time PCR and Western blot, respectively. In this connection, LS-2-3j significantly enhanced the activity of chemotherapeutic drugs in MDR cells and could significantly increase the intracellular accumulation of doxorubicin (DOX) and mitoxantrone (MITX) by inhibiting the function of the efflux pumps in ABCB1- or ABCG2-overexpressing cells. Furthermore, reduced ATPase activity, mRNA transcription, and protein expression levels of ABCB1 and ABCG2 were observed in a concentration dependent manner in MDR cancer cells.


2019 ◽  
Vol 20 (2) ◽  
pp. 268 ◽  
Author(s):  
Pranav Gupta ◽  
Hai-Ling Gao ◽  
Yunali Ashar ◽  
Nishant Karadkhelkar ◽  
Sabesan Yoganathan ◽  
...  

ABCB1 is one of the major drug efflux transporters that is known to cause multidrug resistance (MDR) in cancer patients receiving chemotherapy for the treatment of solid tumors and hematological malignancies. Inhibition of ABCB1 efflux function is important for maintaining the intracellular concentration of chemotherapeutic drugs. Here, we evaluated ciprofloxacin for its ability to reverse MDR caused by the overexpression of ABCB1. Cytotoxicity of ciprofloxacin was determined by the MTT assay. The chemosensitizing effects of ciprofloxacin were determined in combination with ABCB1 substrates. The intracellular accumulation and efflux of ABCB1 substrates was measured by a scintillation counter, and protein expression was determined by the Western blotting. Vanadate-sensitive ATPase assay was performed to determine the effect of ciprofloxacin on the ATPase activity of ABCB1, and docking analysis was done to determine the interaction of ciprofloxacin with ABCB1. Ciprofloxacin significantly potentiated the cytotoxic effects of ABCB1 substrates in ABCB1-overexpressing cells. Furthermore, ciprofloxacin increased the intracellular accumulation and decreased the efflux of [3H]-paclitaxel without altering the expression of ABCB1. Ciprofloxacin stimulated the ATPase activity of ABCB1 in a concentration-dependent manner. Our findings showed that ciprofloxacin potently inhibits the ABCB1 efflux function and it has potential to be developed as a combination anticancer therapy.


Sign in / Sign up

Export Citation Format

Share Document