scholarly journals Modeling Regional Vegetation NPP Variations and Their Relationships with Climatic Parameters in Wuhan, China

2013 ◽  
Vol 17 (4) ◽  
pp. 1-20 ◽  
Author(s):  
Lunche Wang ◽  
Wei Gong ◽  
Yingying Ma ◽  
Miao Zhang

Abstract Net primary productivity (NPP) is an important component of the carbon cycle and a key indicator of ecosystem performance. The aim of this study is to construct a more accurate regional vegetation NPP estimation model and explore the relationship between NPP and climatic factors (air temperature, rainfall, sunshine hours, relative humidity, air pressure, global radiation, and surface net radiation). As a key variable in NPP modeling, photosynthetically active radiation (PAR) was obtained by finding a linear relationship between PAR and horizontal direct radiation, scattered radiation, and net radiation with high accuracy. The fraction of absorbed photosynthetically active radiation (FPAR) was estimated by enhanced vegetation index (EVI) instead of the widely used normalized difference vegetation index (NDVI). Stress factors of temperature/humidity for different types of vegetation were also considered in the simulation of light use efficiencies (LUE). The authors used EVI datasets of Moderate Resolution Imaging Spectroradiometer (MODIS) from 2001 to 2011 and geographic information techniques to reveal NPP variations in Wuhan. Time lagged serial correlation analysis was employed to study the delayed and continuous effects of climatic factors on NPP. The results showed that the authors’ improved model can simulate vegetation NPP in Wuhan effectively, and it may be adopted or used in other regions of the world that need to be further tested. The results indicated that air temperature and air pressure contributed significantly to the interannual changes of plant NPP while rainfall and global radiation were major climatic factors influencing seasonal NPP variations. A significant positive 32-day lagged correlation was observed between seasonal variation of NPP and rainfall (P < 0.01); the influence of changing climate on NPP lasted for 64 days. The impact of air pressure, global radiation, and net radiation on NPP persisted for 48 days, while the effects of sunshine hours and air temperature on NPP only lasted for 16 and 32 days, respectively.

2012 ◽  
Vol 16 (8) ◽  
pp. 858-863 ◽  
Author(s):  
Ester Holcman ◽  
Paulo C. Sentelhas

This study had as its objective the evaluation of the influence of shading screens of different colors on the different microclimate variables in a greenhouse covered with transparent low-density polyethylene (LDPE). The experiment was conducted with five treatments: thermo-reflective screen (T1); a control - without screen (T2); red screen (T3); blue screen (T4); and black screen (T5), all of them with 70% of shading. An automatic micrometeorological station was installed in each treatment, measuring air temperature (T), relative humidity (RH), incoming solar radiation (Rg), photosynthetically active radiation (PAR) and net radiation (Rn) continuously. The control (T2) and red screen (T3) treatments promoted the highest solar radiation transmissivity, respectively 56.3 and 27%. The black screen (T5) had the lowest solar radiation transmissivity (10.4%). For PAR and Rn the same tendency was observed. The highest temperature was observed under blue screen (T4) treatment, which was 1.3 °C higher than external condition. Blue screen (T4) treatment also presented the highest relative humidity difference between inside and outside conditions.


2016 ◽  
Vol 20 (7) ◽  
pp. 2573-2587 ◽  
Author(s):  
Zhongwei Huang ◽  
Hanbo Yang ◽  
Dawen Yang

Abstract. With global climate changes intensifying, the hydrological response to climate changes has attracted more attention. It is beneficial not only for hydrology and ecology but also for water resource planning and management to understand the impact of climate change on runoff. In addition, there are large spatial variations in climate type and geographic characteristics across China. To gain a better understanding of the spatial variation of the response of runoff to changes in climatic factors and to detect the dominant climatic factors driving changes in annual runoff, we chose the climate elasticity method proposed by Yang and Yang (2011). It is shown that, in most catchments of China, increasing air temperature and relative humidity have negative impacts on runoff, while declining net radiation and wind speed have positive impacts on runoff, which slow the overall decline in runoff. The dominant climatic factors driving annual runoff are precipitation in most parts of China, net radiation mainly in some catchments of southern China, air temperature and wind speed mainly in some catchments in northern China.


1992 ◽  
Vol 70 (5) ◽  
pp. 1093-1096 ◽  
Author(s):  
Dan O. Chellemi ◽  
Kerry O. Britton

Incidence and severity of dogwood anthracnose within the interior and exterior canopies of exposed dogwood (Cornus florida L.) trees and canopies of understory trees were recorded over a 53-day period during the summer of 1990. Concurrent measurements of vapor pressure deficit, air temperature, evaporative potential, and photosynthetically active radiation within the canopies were also recorded. Disease incidence was significantly lower in the exterior canopy of exposed trees than in other canopy locations. Disease severity was significantly different among all three canopy locations, with the lowest severity in exterior canopies of exposed trees and the greatest severity in canopies of understory trees. Of the climatic variables measured, evaporative potential provided the most consistent contrast among microclimates at the various canopy locations. Mean evaporative potentials averaged over 6- to 10-day intervals ranged from 0.00 g H2O h−1 in understory and exposed, interior canopies to 0.40 g H2O h−1 in exposed, exterior canopies. Disease incidence and severity were greater in canopies associated with low levels of evaporative potential. Key words: Cornus florida L., dogwood anthracnose, canopy microclimate, evaporative potential.


2013 ◽  
Vol 66 (2) ◽  
pp. 71-78 ◽  
Author(s):  
Tadeusz Zając ◽  
Agnieszka Klimek-Kopyra ◽  
Andrzej Oleksy

Pea (<em>Pisum sativum</em> L.) is the second most important grain legume crop in the world which has a wide array of uses for human food and fodder. One of the major factors that determines the use of field pea is the yield potential of cultivars. Presently, pre-sowing inoculation of pea seeds and foliar application of microelement fertilizers are prospective solutions and may be reasonable agrotechnical options. This research was undertaken because of the potentially high productivity of the 'afila' morphotype in good wheat complex soils. The aim of the study was to determine the effect of vaccination with <em>Rhizobium</em> and foliar micronutrient fertilization on yield of the afila pea variety. The research was based on a two-year (2009–2010) controlled field experiment, conducted in four replicates and carried out on the experimental field of the Bayer company located in Modzurów, Silesian region. experimental field soil was Umbrisol – slightly degraded chernozem, formed from loess. Nitragina inoculant, as a source of symbiotic bacteria, was applied before sowing seeds. Green area index (GAI) of the canopy, photosynthetically active radiation (PAR), and normalized difference vegetation index (NDVI) were determined at characteristic growth stages. The presented results of this study on symbiotic nitrogen fixation by leguminous plants show that the combined application of Nitragina and Photrel was the best combination for productivity. Remote measurements of the pea canopy indexes indicated the formation of the optimum leaf area which effectively used photosynthetically active radiation. The use of Nitragina as a donor of effective <em>Rhizobium</em> for pea plants resulted in slightly higher GAI values and the optimization of PAR and NDVI. It is not recommended to use foliar fertilizers or Nitragina separately due to the slowing of pea productivity.


Author(s):  
Lady L. M. Custódio ◽  
Bernardo B. da Silva ◽  
Carlos A. C. dos Santos

ABSTRACT Photosynthetically active radiation (PAR) comprises the spectral range of global solar radiation (Rs) that is highly related to vegetation productivity. The study aimed to evaluate the relationship between PAR and Rs in Petrolina, PE, and Brasília, DF, Brazil, with data measured in 2011 and 2013 at two stations of the Sistema Nacional de Organização de Dados Ambientais located in Petrolina, PE and Brasília, DF, Brazil, and the obtained models were evaluated using the measurements of 2014. It was verified that the PAR, in instantaneous values (μmol m-2 s-1), can be estimated at 2.31 times the Rs (W m-2) measured in Petrolina, while for daily values of PAR (MJ m-2) is equal to 50% of Rs (MJ m-2). In Brasília, PAR (μmol m-2 s-1) is 2.05 times the Rs (W m-2) and, in daily values, equal to 44% of Rs (MJ m-2). The variability of the PAR/Rs ratio followed the local variations of clearness index (Kt) and Rs. The models presented an adequate performance based on statistical indices mean absolute error, mean relative error, and root mean square error and can be used to estimate PAR.


2015 ◽  
Vol 43 (2) ◽  
pp. 398-403 ◽  
Author(s):  
Attila OMBÓDI ◽  
Zoltán PÉK ◽  
Péter SZUVANDZSIEV ◽  
Zsuzsanna TÓTHNÉ TASKOVICS ◽  
Ambrus KOHÁZI-KIS ◽  
...  

Shading effect of external nets of different colours (white, green, yellow and red) on the yield of two “kapija” pepper (Capsicum anuum L.) cultivars was examined in walk-in plastic tunnels in Hungary under real cultivation circumstances. Shading nets decreased incoming radiation by 23-39% and reduced photosynthetically active radiation by 32-46%. The highest retention was obtained by yellow and green nets, in the range of 450-550 nm and 550-670 nm, respectively. Relation was reported between the degree of shading and the average air temperature of the tunnels, however, treatments did not decrease tunnel air temperature significantly, compared to that of unshaded and paint-shaded control tunnels. This can be explained by the applied proper ventilation and mist irrigation. A strong and negative relation was noted between the intensity of shading and the relative chlorophyll content (SPAD value) of leaves. Shading net treatments did not increase yields, yellow and green nets even decreased it. Instead of tunnel air temperature, yield was mainly affected by photosynthetically active radiation in the experiment. Strong positive linear relation was declared between the chlorophyll content of the leaves and the yield. Results of the current research led to the conclusions that under Hungarian climatic conditions the use of shading nets was less justified if proper cooling techniques (ventilation and mist irrigation) were applied; even under the relatively high incident radiation experienced during the trials. In greenhouses of less favourable climatic conditions, red or white shading nets are recommended instead of commonly used green ones in Hungary.


2012 ◽  
Vol 32 (3) ◽  
pp. 501-509 ◽  
Author(s):  
Ruchele M. Coan ◽  
José E. P. Turco ◽  
Kathia F. L. Pivetta ◽  
Madson N. da Costa ◽  
Caroline de M. D'A. Mateus

With this study, the objective was to estimate the photosynthetically active radiation (PAR) and to correlate it with the dry matter (MMSPA) of the emerald zoysia (Zoysia japonica Steud.) on surfaces with different expositions and slopes. The research was conducted at the Experimental Watershed of the Agricultural Engineering Department, School of Agriculture and Veterinary Sciences of São Paulo State University (FCAV/UNESP), Brazil, where the surfaces (H, 10 N, 30 N, 50 N, 10 S, 30 S, 50 S, 10 L, 30 L, 50 L, 10 O, 30 O and 50 O) were used. To obtain the global solar radiation, it was installed an automated weather station where the PAR (dependent variable) was obtained by the equation y = a + bx, and the global radiation was independent. To compare means of MMSPA, it was used the Tukey test at 5% probability, and to assess the relation PAR/MMSPA, the simple linear correlation coefficient. The result showed that the accumulation of these effects in the PAR increases with North exposure and decreases with the South, and exposure to 50N is most suitable for slopes, not having correlation between the PAR and the MMSPA for the surfaces evaluated for the study period.


Sign in / Sign up

Export Citation Format

Share Document