Role of SiC ceramic particles on the physical and mechanical properties of Al–4%Cu metal matrix composite fabricated via mechanical alloying

2016 ◽  
Vol 51 (9) ◽  
pp. 1285-1298 ◽  
Author(s):  
Mahnaz Keneshloo ◽  
Moslem Paidar ◽  
Morteza Taheri

In the present investigation, Al–Cu composites with SiC particulates were fabricated via mechanical alloying process. The aim of this study was to evaluate the effect of milling time (8, 12, 16 and 32 h), particle size (30 nm and 15 µm) and volume fractions (5, 10 and 15 wt.%) of SiC particles on the metallurgical and mechanical properties. Scanning electron microscopy equipped with X-ray diffraction method was used to investigate the microstructural evolution and morphological changes created during mechanical alloying. Microstructural study indicated that SiC particles were well distributed after the mechanical alloying process. A homogenous distribution of the particles was obtained by 15 wt.% of SiC particles in the aluminum matrix. The results revealed that the SiC particle size also affected the distribution and size of the powders in the matrix and it improved as particle size decreased from 15 µm to 30 nm. The study of mechanical properties clearly showed that a reduction in hardness of composite occurs which is attributed to positive effect of reinforcement particles in resistance to the movement of dislocations. Furthermore, it was found that the wear weight loss of Al–Cu/SiC composite decreases monotonically with increasing SiC content and more uniform particle size distribution. The excellent wear rate was primarily attributed to uniform distribution of the SiC particles.

2012 ◽  
Vol 192-193 ◽  
pp. 136-141
Author(s):  
S.G. Shabestari ◽  
P. Ghaemmaghami ◽  
H. Saghafian ◽  
A. Osanlo

Attractive physical and mechanical properties of aluminum alloys make them very interesting for the automotive industry. The commercial way for manufacturing LM28 alloy is die-casting, but this process encounters several problems such as shrinkage and gas porosities. Their good mechanical properties and high resistance to wear are because of the presence of hard primary silicon particles distributed in the matrix. Therefore, the size and morphology of primary silicon and also the structure of α-Al particles in hypereutectic Al–Si alloys influence the mechanical properties of the alloys. In this research, a new process of manufacturing of this alloy has been developed using LM28 feedstock produced through cooling slope casting. The feedstocks produced via cooling slope casting had a partial globular structure that contained globules, rosettes and dendrites of α-Al. These feedstocks were thixoformed under three different pressures. The primary dendrites and rosettes changed to globular structure. The microstructure of thixoformed parts contained α-Al globules, small primary Si particles dispersed between these globules, and Al-Si eutectic phase. The mechanism of the formation of α-Al globules by this process was explained. Microstructures of as cast specimens, feedstocks produced via cooling slope, specimens that were heat treated in the semi-solid temperature and thixoformed specimens were studied with optical microscope and image analysis. The morphological changes during these processes were interpreted.


2013 ◽  
Vol 829 ◽  
pp. 319-323
Author(s):  
Saeed Riahi ◽  
Mohammad Rajabi ◽  
Sayed Mahmood Rabiee

In this study, porous titanium-10 wt.% bioglass nanocomposites were fabricated by the combination of mechanical alloying and a space holder sintering process. The mixed powders were mechanically alloyed for 15 h. The blended Ti-Bioglass was mixed with 30 wt.% carbamide as a space holder. The mixtures were uniaxially pressed and finally, the green compacts sintered at 1150°C for 5 hours. The porous structures are characterized by X-ray diffraction method (XRD) and scanning electron microscopy (SEM). The mechanical properties were examined using micro hardness and compression tests. The investigation revealed that after 15 h of milling, the Bioglass dissolved in Ti lattice. Also, results show that nanostructured Ti-10 wt.% Bioglass with 31.5 nm crystallite size possess greater hardness compared to respective microcrystalline titanium and desirable compressive strength for using in biomedical application.


2012 ◽  
Vol 271-272 ◽  
pp. 12-16 ◽  
Author(s):  
Zeng Lei Ni ◽  
Ai Qin Wang ◽  
Jing Pei Xie

This paper studied the combined effects of particle size and distribution on the mechanical properties of the SiC particle reinforced Al-30Si alloy composites. The microstructure of experimental material was analyzed by SEM, the tensile strength and physical properties were examined. The results show that, with the increase of the SiC particle size in the composites, the clustering degree of the SiC particles decreases in the matrix, the SiC particles distribute more ununiformly. The tensile strength is influenced by the SiC particle size, the tensile strength of the composite reinforced by 13μm sized SiC particles is the highest.


Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 414 ◽  
Author(s):  
Manohar Reddy Mattli ◽  
Abdul Shakoor ◽  
Penchal Reddy Matli ◽  
Adel Mohamed Amer Mohamed

In this study, Al–Y2O3 nanocomposites were synthesized via mechanical alloying and microwave-assisted sintering. The effect of different levels of yttrium oxide on the microstructural and mechanical properties of the Al–Y2O3 nanocomposites were investigated. The density of the Al–Y2O3 nanocomposites increased with increasing Y2O3 volume fraction in the aluminum matrix, while the porosity decreased. Scanning electron microscopy analysis of the nanocomposites showed the homogeneous distribution of the Y2O3 nanoparticles in the aluminum matrix. X-ray diffraction analysis revealed the presence of yttria particles in the Al matrix. The mechanical properties of the Al–Y2O3 nanocomposites increased as the addition of yttria reached to 1.5 vol. % and thereafter decreased. The microhardness first increased from 38 Hv to 81 Hv, and then decreased to 74 ± 4 Hv for 1.5 vol. % yttria. The Al–1.5 vol.% Y2O3 nanocomposite exhibited the best ultimate compressive strength and yielded a strength of 359 ± 7 and 111 ± 5 MPa, respectively. The Al–Y2O3 nanocomposites showed higher hardness, yield strength, and compressive strength than the microwave-assisted mechanically alloyed pure Al.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1219
Author(s):  
Zhiyu Yang ◽  
Jianzhong Fan ◽  
Yanqiang Liu ◽  
Junhui Nie ◽  
Ziyue Yang ◽  
...  

The strengthening and weakening effects of SiC particles on composite strength and ductility were studied. Al-Cu-Mg alloys matrices with three different mechanical properties were used. Their yield strength, ultimate strength, and elongation range from 90 to 379 MPa, 131 to 561 MPa, and 18% to 31%, respectively. SiC particles with sizes of 4, 8, 12, 15, 20, and 30 μm were used to reinforce these three matrices, separately, and the composites of eighteen combinations of the particle sizes and matrix strengths were manufactured. Yield strength, ultimate strength, elongation, and fracture morphology of these composites were characterized. Based on the analysis, the strengthening to weakening behavior on strength and ductility were comprehensively discussed. The critical particle size having the best ductility was obtained. The strengthening limit and match range of the particle and the matrix to achieve effective strengthening were defined as a function of the particle size and matrix strength. This work offers an important reference for optimization of mechanical properties of the particle-reinforced metal matrix composites.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


Author(s):  
Massimiliano Bonesso ◽  
Pietro Rebesan ◽  
Claudio Gennari ◽  
Simone Mancin ◽  
Razvan Dima ◽  
...  

AbstractOne of the major benefits of the Laser Powder Bed Fusion (LPBF) technology is the possibility of fabrication of complex geometries and features in only one-step of production. In the case of heat exchangers in particular, this is very convenient for the fabrication of conformal cooling channels which can improve the performance of the heat transfer capability. Yet, obtaining dense copper parts printed via LPBF presents two major problems: the high reflectivity of 1 μm (the wavelength of commonly used laser sources) and the high thermal conductivity of copper that limits the maximum local temperature that can be attained. This leads to the formation of porous parts.In this contribution, the influence of the particle size distribution of the powder on the physical and mechanical properties of parts produced via LPBF is studied. Three copper powders lots with different particle size distributions are used in this study. The effect on densification from two laser scan parameters (scan speed and hatching distance) and the influence of contours scans on the lateral surface roughness is reported. Subsequently, samples manufactured with the optimal process parameters are tested for thermal and mechanical properties evaluation.


2017 ◽  
Vol 866 ◽  
pp. 199-203
Author(s):  
Chidchanok Chainej ◽  
Suparut Narksitipan ◽  
Nittaya Jaitanong

The aims of this research were study the microstructures and mechanical properties for partial replacement of cement with Fly ash (FA) and kaolin waste (KW). Ordinary Portland cement were partially replaced with FA and KW in the range of 25-35% and 10-25% by weight of cement powder. The kaolin waste was ground for 180 minutes before using. The specimen was packing into an iron mold which sample size of 5×5×5 cm3. Then, the specimens were kept at room temperature for 24 hours and were moist cured in the incubation lime water bath at age of 3 days. After that the specimens were dry cured with plastic wrap at age of 3, 7, 14 and 28 days. After that the compounds were examined by x-ray diffraction patterns (XRD) and the microstructures were examined by scanning electron microscopy (SEM). The compressive strength was then investigated.


2018 ◽  
Vol 170 ◽  
pp. 03030 ◽  
Author(s):  
Rustem Mukhametrakhimov ◽  
Liliya Lukmanova

The paper studies features of the hydration process of the modified blended cement for fiber cement panels (FCP) using differential thermal analysis, X-ray diffraction analysis, electron microscopy and infrared spectroscopy. It is found that deeper hydration process in silicate phase, denser and finer crystalline structure form in fiber cement matrix based on the modified blended cement. Generalization of this result to the case of fiber cement panels makes it possible to achieve formation of a denser and homogeneous structure with increased physical and mechanical properties.


2015 ◽  
Vol 75 (7) ◽  
Author(s):  
Amir Arifin ◽  
Abu Bakar Sulong ◽  
Norhamidi Muhamad ◽  
Junaidi Syarif

Hydroxyapatite (HA) has been widely used in biomedical applications due to its excellent biocompatibility. However, Hydroxyapatite possesses poor mechanical properties and only tolerate limited loads for implants. Titanium is well-known materials applied in implant that has advantage in mechanical properties but poor in biocompatibility. The combination of the Titanium alloy and HA is expected to produce bio-implants with good in term of mechanical properties and biocompatabilty. In this work, interaction and mechanical properties of HA/Ti6Al4V was analyzed. The physical and mechanical properties of HA/Ti6Al4V composite powder obtained from compaction (powder metallurgy) of 60 wt.% Ti6Al4V and 40 wt.% HA and sintering at different temperatures in air were investigated in this study. Interactions of the mixed powders were investigated using X-ray diffraction. The hardness and density of the HA/Ti6Al4V composites were also measured. Based on the results of XRD analysis, the oxidation of Ti began at 700 °C. At 1000 °C, two phases were formed (i.e., TiO2 and CaTiO3). The results showed that the hardness HA/Ti6Al4V composites increased by 221.6% with increasing sintering temperature from 700oC to 1000oC. In contrast, the density of the composites decreased by 1.9% with increasing sintering temperature. 


Sign in / Sign up

Export Citation Format

Share Document