Forecasting the byproducts generated by hydrothermal carbonisation of municipal solid wastes

2016 ◽  
Vol 35 (1) ◽  
pp. 92-100 ◽  
Author(s):  
Yousheng Lin ◽  
Xiaoqian Ma ◽  
Xiaowei Peng ◽  
Zhaosheng Yu

The influences of temperature and residence times on the conversion and product distribution during hydrothermal carbonisation of municipal solid wastes were investigated. Analysis of variance and reaction severity were used to comprehensively analyse the experimental results. Analysis results showed both reaction temperature and residence time had varying degrees of impact on production distribution and hydrochars characteristic, while the effect of combine temperature and time was negligible. It is novel to find that the products yield was a linear function of the logarithm of the reaction ordinate. Base on comprehensive consideration, 240 °C to 260 °C and 50 min to 60 min would be the optimised reaction region to achieve relatively better economic benefits for hydrothermal carbonisation of municipal solid waste. By employing the analysis results and estimated models of high heating value and solid yield established in this article, predicting the product characteristics that have not been explored experimentally become possible.

2021 ◽  
Vol 11 (21) ◽  
pp. 10158
Author(s):  
Jesús A. Montes ◽  
Carlos Rico

In this paper, the authors assess the possibilities of energetic valorization for two solid wastes from alcoholic beverage production. Distilled gin spent botanicals (DGSB) and brewers’ spent grains (BSG) are tested, both by themselves and as co-substrates, for their possibilities as substrates for anaerobic digestion in a system of box-type digesters, suited for the process. While BSGs show a good performance for anaerobic digestion, DGSBs, despite showing an acceptable biomethanogenic potential result as not suitable for the process. Experiments using DGSBs as substrate in the reactors result in failure. And, as a co-substrate, the biomethanogenic digestion process appears to be hampered and lagged. Possible explanations for this behavior are explored, as well as other possibilities for the use of the material as a power source given its high heating value.


Author(s):  
Karena M. Ostrem ◽  
Karsten Millrath ◽  
Nickolas J. Themelis

A large fraction of the municipal solid wastes (MSW) stream in the U.S. comprises of natural organic compounds (i.e., food and plant wastes) with high moisture content and low heating value. While these properties are undesirable during the combustion of MSW in waste-to-energy (WTE) plants, they are required for anaerobic digestion (AD). During AD, methane gas is produced that can be captured and used for energy generation. The required long residence times limit the throughput of an AD plant but further development may result in increasing the rates of bioreactions. This paper introduces current AD practices and identifies possible synergies between AD and WTE. It is suggested that co-siting of WTE and AD facilities may result in mutual benefits.


2021 ◽  
Vol 237 ◽  
pp. 114101
Author(s):  
Octávio Alves ◽  
Catarina Nobre ◽  
Luís Durão ◽  
Eliseu Monteiro ◽  
Paulo Brito ◽  
...  

2016 ◽  
Vol 867 ◽  
pp. 139-143
Author(s):  
Xiao Liang Chen ◽  
Zuan Tian ◽  
Jian Ping Ding

The weight percentage of food waste, plastics and rubber, paper, textile, weed and wood, and leather were measured for dry-base municipal solid wastes in a city of west China respectively. The dry higher heating value, wet higher heating value, and wet lower heating value of municipal solid wastes were also measured respectively. Based on the measured physical compositions data of wastes, three models were developed to predict three kinds of heating values respectively by the multiple linear regression method. The prediction results were compared with three predictive models from different regions in the world, and the predictive results of the developed models are the most accurate.


2012 ◽  
Vol 11 (2) ◽  
pp. 127 ◽  
Author(s):  
DWI ARIES HIMAWANTO ◽  
R. DHIMAS DHEWANGGA P ◽  
HARWIN SAPTOADI ◽  
TRI AGUNG ROHMAT ◽  
INDARTO INDARTO

Municipal Solid Wastes (MSW) has great potential as a clean, renewable feedstock for producing modern energy carriers through thermochemical, called pyrolyis, and densification processes to form a Refused Derived Fuels (RDF), i.e MSW char briquette. In this article, thermogravimetry analysis has done to analyzed combustion characteristic of MSW briquette dan MSW char briquette. The sample in this research is 70 % wt MSW organic component 30 % wt MSW non organic component. . The 20 gram sample is placed in the furnace whose temperature is increased 10 0C/min and until sample temperature reaches 400 0C and held for 30 minutes before the sample is cooled into room temperature. 100 ml/min nitrogen is introduced from the bottom of furnace as a swept gas.. The formed char is densified and then characterized in a self manufactured macro balance, adopted from Swithenbank et al.. The 3 gram sample is placed in the furnace whose temperature is increased wih the selected heating rate until sample mass nearly constant.The results of the research showed that the effect of pyrolysis give the increase of sample heating value and give the lower ignition temperature of char briquette combustion.


2020 ◽  
Vol 5 (4) ◽  
pp. 202-209
Author(s):  
Alexander Topal ◽  
◽  
Iryna Holenko ◽  
Luidmyla Haponych ◽  
◽  
...  

For the municipal solid waste (MSW) to be used in a proper way, it is necessary to implement clean technologies capable of thermal treatment of MSW and RDF in order to produce heat and electricity while meeting current ecological requirements. Nowadays, a number of technologies for MSW/RDF thermal treating are being used worldwide. Among them, the most proven technologies, applicable for industrial introduction, have been considered while analyzing their advantages/ disadvantages accounting for local conditions of Ukraine.


1997 ◽  
Vol 35 (8) ◽  
pp. 231-238 ◽  
Author(s):  
Tay Joo Hwa ◽  
S. Jeyaseelan

Conditioning of sludges improves dewatering characteristics and reduces the quantity of sludge to be handled. Anaerobic digested sludge collected from a sewage treatment plant contained 1.8% to 8% oil. The increase of specific resistance and capillary suction time (CST) with increasing oil content observed in these samples indicates the interference of oil in dewatering. It has been found that addition of municipal solid wastes incinerator fly ash decreases the specific resistances and capillary suction times of oily sludges rapidly up to 3% dosage. Beyond 3% fly ash, the decrease is less significant and the solids content in the sludge cake increases. This optimum dosage remains the same for sludges with varying oil contents from 1.8% to 12%. The total suspended solids of filtrate decreases with fly ash dosage but the toxic concentrations of heavy metals increases considerably. However at the optimum dosage of 3%, concentrations of heavy metals are within the limits for discharging into the sewers. The correlations of CST with the dewatering characteristics such as specific resistance, filter yield and corrected filter yield are established. These correlations can be used to obtain a quick prediction on dewaterability.


2021 ◽  
Vol 13 (15) ◽  
pp. 8147
Author(s):  
Sasiwimol Khawkomol ◽  
Rattikan Neamchan ◽  
Thunchanok Thongsamer ◽  
Soydoa Vinitnantharat ◽  
Boonma Panpradit ◽  
...  

A horizontal drum kiln is a traditional method widely used in Southeast Asian countries for producing biochar. An understanding of temperature conditions in the kiln and its influence on biochar properties is crucial for identifying suitable biochar applications. In this study, four agricultural residues (corncob, coconut husk, coconut shell, and rice straw) were used for drum kiln biochar production. The agricultural residues were turned into biochar within 100–200 min, depending on their structures. The suitability of biochar for briquette fuels was analyzed using proximate, ultimate, and elemental analysis. The biochar’s physical and chemical properties were characterized via bulk density, iodine number, pHpzc, SEM, and FTIR measurements. All biochars had low O/C and H/C ratios and negative charge from both carbonyl and hydroxyl groups. Coconut husk and shell biochar had desirable properties such as high heating value and a high amount of surface functional groups which can interact with nutrients in soil. These biochars are thus suitable for use for a variety of purposes including as biofuels, adsorbents, and as soil amendments.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 660
Author(s):  
Izabela S. Pieta ◽  
Alicja Michalik ◽  
Elka Kraleva ◽  
Dusan Mrdenovic ◽  
Alicja Sek ◽  
...  

Within the Waste2Fuel project, innovative, high-performance, and cost-effective fuel production methods from municipal solid wastes (MSWs) are sought for application as energy carriers or direct drop-in fuels/chemicals in the near-future low-carbon power generation systems and internal combustion engines. Among the studied energy vectors, C1-C2 alcohols and ethers are mainly addressed. This study presents a potential bio-derived ethanol oxidative coupling in the gas phase in multicomponent systems derived from hydrotalcite-containing precursors. The reaction of alcohol coupling to ethers has great importance due to their uses in different fields. The samples have been synthesized by the co-precipitation method via layered double hydroxide (LDH) material synthesis, with a controlled pH, where the M(II)/M(III) ≈ 0.35. The chemical composition and topology of the sample surface play essential roles in catalyst activity and product distribution. The multiple redox couples Ni2+/Ni3+, Cr2+/Cr3+, Mn2+/Mn3+, and the oxygen-vacant sites were considered as the main active sites. The introduction of Cr (Cr3+/Cr4+) and Mn (Mn3+/Mn4+) into the crystal lattice could enhance the number of oxygen vacancies and affect the acid/base properties of derived mixed oxides, which are considered as crucial parameters for process selectivity towards bio-DEE and bio-butanol, preventing long CH chain formation and coke deposition at the same time.


2020 ◽  
Vol 6 (2) ◽  
pp. 43 ◽  
Author(s):  
Rubén González ◽  
Judith González ◽  
José G. Rosas ◽  
Richard Smith ◽  
Xiomar Gómez

Anaerobic digestion is an established technological option for the treatment of agricultural residues and livestock wastes beneficially producing renewable energy and digestate as biofertilizer. This technology also has significant potential for becoming an essential component of biorefineries for valorizing lignocellulosic biomass due to its great versatility in assimilating a wide spectrum of carbonaceous materials. The integration of anaerobic digestion and pyrolysis of its digestates for enhanced waste treatment was studied. A theoretical analysis was performed for three scenarios based on the thermal needs of the process: The treatment of swine manure (scenario 1), co-digestion with crop wastes (scenario 2), and addition of residual glycerine (scenario 3). The selected plant design basis was to produce biochar and electricity via combined heat and power units. For electricity production, the best performing scenario was scenario 3 (producing three times more electricity than scenario 1), with scenario 2 resulting in the highest production of biochar (double the biochar production and 1.7 times more electricity than scenario 1), but being highly penalized by the great thermal demand associated with digestate dewatering. Sensitivity analysis was performed using a central composite design, predominantly to evaluate the bio-oil yield and its high heating value, as well as digestate dewatering. Results demonstrated the effect of these parameters on electricity production and on the global thermal demand of the plant. The main significant factor was the solid content attained in the dewatering process, which excessively penalized the global process for values lower than 25% TS.


Sign in / Sign up

Export Citation Format

Share Document