Mechanically robust and highly stretchable woven fabric containing metal wire for personal protective clothing

2020 ◽  
pp. 152808372097565
Author(s):  
Yong Wang ◽  
Changliu Chu ◽  
Jiqiang Cao ◽  
Stuart Gordon

Highly stretchable composite yarns containing metal wire have attracted great interest as a fundamental building block for special protective fields. A method for producing tri-component elastic-conductive composite yarns (t-ECCYs) has been described previously. The main purpose of this work was to investigate the mechanical behavior and structural stability of a highly stretchable woven fabric containing t-ECCYs inserted in its weft direction. By virtue of the unique structure of t-ECCYs, the woven fabric has a denser and tighter surface than the reference fabric (100% cotton), which facilitates its weft elastic stretchability in excess of 40%. Furthermore, a typical initial low-stress tensile curve characteristic and an acceptable cyclic elastic recovery stability at a higher strain of 25% were observed, indicating excellent mechanical robustness of as-prepared woven fabric. Also, a modified standard solid model by introducing an exponent to the exponential function can fairly well replicate the tensile characteristics during stretch. Importantly, the structural stability of the fabric remained nearly unchanged following cyclic expansion (≈43%) and washing-drying (10 times) cycles. It is promising that this kind of mechanically robust and highly stretchable woven fabric containing metal wire is prerequisite for the next wave of superelastic electromagnetic shielding materials.

Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 597 ◽  
Author(s):  
Pei-Chen Zhao ◽  
Wen Li ◽  
Wei Huang ◽  
Cheng-Hui Li

The design of polymers that exhibit both good elasticity and self-healing properties is a highly challenging task. In spite of this, the literature reports highly stretchable self-healing polymers, but most of them exhibit slow elastic recovery behavior, i.e., they can only recover to their original length upon relaxation for a long time after stretching. Herein, a self-healing polymer with a fast elastic recovery property is demonstrated. We used 4-[tris(4-formylphenyl)methyl]benzaldehyde (TFPM) as a tetratopic linker to crosslink a poly(dimethylsiloxane) backbone, and obtained a self-healing polymer with high stretchability and fast elastic recovery upon stretching. The strain at break of the as-prepared polymer is observed at about 1400%. The polymer can immediately recover to its original length after being stretched. The damaged sample can be healed at room temperature with a healing efficiency up to 93% within 1 h. Such a polymer can be used for various applications, such as functioning as substrates or matrixes in soft actuators, electronic skins, biochips, and biosensors with prolonged lifetimes.


2013 ◽  
Vol 341-342 ◽  
pp. 1449-1452
Author(s):  
Qing Dun Zeng ◽  
Fang Liu

Various new type scaffolds have been introduced and developed in China. They are novel in structure and economic in material, but their security and reliability can not be ignored. This paper introduced a new chained formwork support frame with nine upright tubes and many cross-braced connections. Firstly, the load test of the support frame was performed in order to observe the failure process and to determine the ultimate bearing capacity. Then, the strength and stability of both single upright tube and a cross-braced rod were checked according to the existing specifications on scaffolds. Finally, a finite element software ANSYS was used to establish a solid model for the support frame. The structural stability was analyzed and the ultimate bearing capacity was calculated. The comparison between the computational and experiment results was carried out. The results show that the ultimate bearing capacity of the new chained formwork support frame is controlled by the structural stability.


Author(s):  
Roni Sujarwadi ◽  
Tresna Priyana Soemardi

In this research, composite material was fabricated from both renewable resources and biodegradable materials: ramie woven fabric as reinforcement and 3D printed polylactic acid (PLA) filament as resin matrix. The laminate composites were produced using a film stacking method and processed using hot-press molding. The mechanical properties of woven ramie fabric, PLA matrix, and laminate composites were investigated. It is shown that the breaking force of the plain woven ramie fabric in the warp direction was greater than in the weft direction. Further, the tensile and impact properties of laminate at warp direction higher than weft direction when ramie fabric reinforcement is used. In addition, scanning electron microscopy examination of laminate composite showed good bonding between ramie fiber and PLA matrix. In summary, laminated composites based on polylactic acid and woven ramie fabric display good performance capability, which can use for the development of engineering applications.


2018 ◽  
Vol 69 (03) ◽  
pp. 177-182
Author(s):  
ZAHRA QURBAT ◽  
MANGAT ASIF ELAHI ◽  
FRAZ AHMAD ◽  
HUSSAIN SAJID ◽  
ABBAS MUDASSAR ◽  
...  

Air and moisture transport properties of plain woven fabric made from 20sNec cotton in warp and 20sNec pure yarns of tencel, modal, pro-modal, bamboo, polyester and cotton yarn inweft direction are studied. Major characteristics added for this study include water vapour permeability, air permeability, wettingtime and wicking speed. In comparison of six different samples of variously composed materials in weft direction, the air permeability of tencel was minimum and polyester was maximum, whereas the reverse results were observed for both the samples in case of water vapour permeability. Among the blends with cotton, thermal conductivity of bamboo and thermal absorptivity of polyester was found maximum whereas the minimum thermal resistance was observed for pro modal yarn in weft. Similar pattern was observed in spreading speed and wetting time of the polyester when observed from either side top or bottom. Air and moisture comfort properties of bamboo and pro modal, having nearly similar values are suggested to be used in garments used for golf players


2020 ◽  
Vol 20 (2) ◽  
pp. 133-139
Author(s):  
Carla Hertleer ◽  
Jeroen Meul ◽  
Gilbert De Mey ◽  
Simona Vasile ◽  
Sheilla A. Odhiambo ◽  
...  

AbstractElectro-conductive (EC) yarns can be woven into a hybrid fabric to enable electrical current to flow through the fabric from one component A to another component B. These hybrid fabrics form the bases of woven e-textiles. However, at the crossing point of an EC yarn in warp and in weft direction, there is a contact resistance and thus generation of heat may occur in this area. Both phenomena are inseparable: if the contact resistance in the EC contact increases, the generated heat will increase as well. Predicting this electrical and thermal behavior of EC contacts in hybrid woven fabrics with stainless steel yarns is possible with a mathematical model based on the behavior of a metal oxide varistor (MOV). This paper will discuss in detail how this can be achieved.


2019 ◽  
Vol 7 (2) ◽  
pp. 207-220 ◽  
Author(s):  
Lisa Oktavia Br Napitupulu ◽  
Asri Widyasanti ◽  
Ahmad Thoriq ◽  
Asep Yusuf

Sansevieria or known as tongue-in-law plant is an ornamental plant that is quite popular in Indonesia. This plant is very easily cultivated, easy to grow in areas with less water and sunlight. This plant contains potential natural fibers used as raw material requirements for textile industry, specifically in fabric making. The aims of this research were to determine the production process consisting and analyzing the characteristics of woven fabrics from the leaves of the tongue-in-law plant. The method of fibers extraction used the mechanical decortication process and making woven fabric is done using ATBM. The research method used is descriptive method. Based on the results of the study, it is known that the woven cloth of tongue-in-law has color characteristics with a value of L* 69.73; a* 1.86; b* 17,38; H 83,88. Besides that, it is known the mechanical characteristics of the tongue-in-law woven fabric, the tensile strength of the fabric, the weft  direction of 46.05 kg and the warp direction of 19.96 kg; weft direction stretch 22% and stretch direction of the warp of 55.20%; weft direction tear strength 19.17% and wrap direction 4.60%; and air penetrating power 116.2 cm3/cm2/s.The value of the tensile strength of the tongue-in-law woven fabric produced in the warp direction does not meet the standards of SNI 08-0056-2006 woven fabric quality requirements for suit.Therefore, woven fabric produced is intended as a craft material.


2013 ◽  
Vol 796 ◽  
pp. 607-612
Author(s):  
Fei Fei Li ◽  
Chun Qin Zheng ◽  
Guan Mei Qin ◽  
Xiao Hong Zhou

Thermal insulation and flame-retardant (TIFR) protective clothing, which has good thermal protective performance (TPP), could protect people from high-temperature or flame in casting industry, the petrochemical industry, fire industry and et al. That is, TIFR protective clothing must have certain function of slowing or restraining heat transmission, and insulating radiant heat and convection heat from high temperature heat source. The construction of TIFR protective clothing is being developed from single layer to multi-layer fabrics made by flame-retardant (FR) fibre. In this paper, based on TPP-206 tester, the TPP coefficient of single and multi-layer fabrics with flame-retardant were measured, and the TPP of TIFR protective clothing was analyzed. TPP coefficient of single fabrics included the FR viscose non-woven fabric do not meet the standard. That of all of multi-layer fabrics meet the standard requirement, and the FR viscose/wool blended fabric is not suitable for fire fighter. It is significant and the most observable effect to put the PTFE membrane between the outer layer and the insulating layer. It could improve the overall thermal protection performance.


2013 ◽  
Vol 796 ◽  
pp. 630-633 ◽  
Author(s):  
Ying Liu ◽  
Han Yu Wu ◽  
Yu Ping Li ◽  
Xiao Qun Dai

In this study, the effect of different undergarments on micro-climate environment under anti-static dust-free clothing was investigated. Five male undergraduates participated in wear trials conducted in a climate chamber of 24 ± 1°C and 60 ± 5%RH, three undergarments of different materials were worn under an antistatic dust-free overall respectively. While subjects doing mild exercise, the temperature and relative humidity under the undergarment was measured at chest, and the skin temperature at arm, chest, thigh and calf were measured. It was found that undergarment made of plain woven fabric was the best to keep the relative humidity on skin surface low and mean skin temperature stable during mild exercise among three undergarments of different materials. It was demonstrated that hydrophilic fiber might not the best material of undergarment for protective clothing, knitted fabrics which have more volume to hold water might not be good either. It was showed that materials absorb water and moisture and quick dry is suitable to undergarment for protective clothing.


2015 ◽  
Vol 10 (2) ◽  
pp. 155892501501000
Author(s):  
Gülcan Süle

In this research, the bending property of jacquard woven fabrics and the effects of weft density, weft yarn count, weave, and Lycra inclusion in weft yarn on this property were investigated. Viscose filament warp yarn and polyester and polyester/Lycra weft yarns were used for weaving fabrics, and 4/1 and 7/1 satin weaves with the same jacquard design were used as the ground weave. Experimental results show that the bending rigidities of the fabrics in the warp directions increase as the weft density increases and the weft yarn gets thicker. The bending rigidities of the fabrics woven with a 4/1 satin weave in the warp direction are higher compared to the bending rigidities of the fabrics woven with a 7/1 satin weave in the same direction. Similar to the bending rigidities in the warp direction, as the weft density increases and the weft yarn gets thicker, the bending rigidities of the fabrics in the weft directions increase. When the weft yarn includes Lycra, the bending rigidity values of the fabric decrease in the weft direction. Additionally, similar to the bending rigidity in the warp direction, the jacquard woven fabrics with a 4/1 satin weave have a higher bending rigidity in the weft direction compared to the jacquard woven fabrics with a 7/1 satin weave. It was observed that when the weft density increases, the overall bending rigidities of the fabrics increase. Despite fabrics woven with a polyester/Lycra weft yarn having a thicker weft yarn and heavier weight with the same weft density and weave compared to fabrics woven with a polyester weft yarn, the bending rigidity values in the weft direction have a lower overall fabric bending rigidity.


2015 ◽  
Vol 732 ◽  
pp. 123-126
Author(s):  
Diana Šimić Penava ◽  
Željko Penava ◽  
Željko Knezić

Anisotropy is the characteristic which is typical for most materials, especially woven fabrics. Influence of direction of tensile force action on the properties of the fabric is big and frequently tested. The woven fabric can be defined as orthogonal elastomer. The values of elastic modulus of woven fabrics for different angles of extension direction were analyzed. Three types of fabric samples of different weaves (plain, twill, sateen) and the same raw material composition were tested under tensile forces in seven directions oriented with 15° increment with respect to the weft direction. Elastic modulus of woven fabrics was determined experimentally in the laboratory. Based on the experimentally obtained values, theoretically calculated elastic modulus for arbitrarily chosen fabric directions was calculated. A good agreement between experimental results and the calculated obtained values of the elastic modulus was shown, so the theoretical equations can be used with high accuracy to calculate the elastic modulus of the fabric in various directions. Therefore, the measurements need to be implemented when the tensile force acting on the fabric only in the warp (90°), weft (0°) and at angle of 45°.


Sign in / Sign up

Export Citation Format

Share Document