scholarly journals Elemental Diet Accelerates the Recovery From Oral Mucositis and Dermatitis Induced by 5-Fluorouracil Through the Induction of Fibroblast Growth Factor 2

2017 ◽  
Vol 17 (2) ◽  
pp. 423-430 ◽  
Author(s):  
Koji Harada ◽  
Tarannum Ferdous ◽  
Hiroaki Kobayashi ◽  
Yoshiya Ueyama

Mucositis and dermatitis induced by anticancer agents are common complications of anticancer therapies. In this study, we evaluated the efficacy of Elental (Ajinomoto Pharmaceutical Ltd, Tokyo, Japan), an elemental diet with glutamine in the treatment of 5-fluorouracil (5-FU)-induced oral mucositis and dermatitis in vivo and tried to clarify the underlying mechanisms of its action. Oral mucositis and dermatitis was induced through a combination of 5-FU treatment and mild abrasion of the cheek pouch in hamsters and the dorsal skin in nude mice respectively. These animals received saline, dextrin or Elental suspension (18 kcal/100 g) by a gastric tube daily until sacrifice. Elental reduced oral mucositis and dermatitis more effectively than dextrin in the animal model. Moreover, growth facilitating effects of Elental on HaCaT cells were examined in vitro. MTT assay, wound healing assay, and migration assay revealed that Elental could enhance the growth, invasion, and migration ability of HaCaT. ELISA and Western blotting showed upregulated FGF2 in Elental-treated HaCaT. These findings suggest that Elental is effective for the treatment of mucositis and dermatitis, and may accelerate mucosal and skin recovery through FGF2 induction and reepithelization.

Author(s):  
Xue Zhang ◽  
Jing Han ◽  
Li Feng ◽  
Lianghui Zhi ◽  
Da Jiang ◽  
...  

Abstract Dual oxidase 2 (DUOX2) is an important regulatory protein in the organic process of thyroid hormone iodine. Mounting evidence suggests that DUOX2 plays a crucial role in the occurrence and development of cancers. However, the function and mechanism of DUOX2 in colorectal cancer (CRC) have not been fully clarified. In the present study, the relationship between the expression of DUOX2 and the clinicopathological features and prognosis of CRC patients was analyzed. Furthermore, the effects of DUOX2 on proliferation and invasion in vitro and in vivo were examined. DUOX2-associated proteins were identified by immunoprecipitation (IP). Next-generation sequencing detection was performed to illustrate the mechanism of DUOX2 in CRC cells. It was found that the expression levels of DUOX2 in metastatic sites were significantly higher than those in primary tumor tissues, and this was demonstrated to be associated with poor prognosis. The knockdown of DUOX2 inhibited the invasion and migration of CRC cells. Furthermore, DUOX2 regulated the stability of ribosomal protein uL3 (RPL3) by affecting the ubiquitination status of RPL3, and the invasion and migration ability of DUOX2 can be reversed by the overexpression of RPL3. The downregulation of DUOX2 can affect the expression level of a large number of genes, and a number of these are enriched in the PI3K–AKT pathway. Some of the changes caused by DUOX2 can be reversed by RPL3. In summary, DUOX2 exhibits a significantly higher expression in CRC tumor samples, and facilitates the invasion and metastasis ability of CRC cells by interacting with RPL3.


2021 ◽  
pp. 1-9
Author(s):  
Huan Guo ◽  
Baozhen Zeng ◽  
Liqiong Wang ◽  
Chunlei Ge ◽  
Xianglin Zuo ◽  
...  

BACKGROUND: The incidence of lung cancer in Yunnan area ranks firstly in the world and underlying molecular mechanisms of lung cancer in Yunnan region are still unclear. We screened a novel potential oncogene CYP2S1 used mRNA microassay and bioinformation database. The function of CYP2S1 in lung cancer has not been reported. OBJECTIVE: To investigate the functions of CYP2S1 in lung cancer. METHODS: Immunohistochemistry and Real-time PCR were used to verify the expression of CYP2S1. Colony formation and Transwell assays were used to determine cell proliferation, invasion and migration. Xenograft assays were used to detected cell growth in vivo. RESULTS: CYP2S1 is significantly up-regulated in lung cancer tissues and cells. Knockdown CYP2S1 in lung cancer cells resulted in decrease cell proliferation, invasion and migration in vitro. Animal experiments showed downregulation of CYP2S1 inhibited lung cancer cell growth in vivo. GSEA analysis suggested that CYP2S1 played functions by regulating E2F targets and G2M checkpoint pathway which involved in cell cycle. Kaplan-Meier analysis indicated that patients with high CYP2S1 had markedly shorter event overall survival (OS) time. CONCLUSIONS: Our data demonstrate that CYP2S1 exerts tumor suppressor function in lung cancer. The high expression of CYP2S1 is an unfavorable prognostic marker for patient survival.


2016 ◽  
Vol 38 (3) ◽  
pp. 859-870 ◽  
Author(s):  
Mingfeng He ◽  
Hongquan Dong ◽  
Yahui Huang ◽  
Shunmei Lu ◽  
Shu Zhang ◽  
...  

Background/Aims: Microglia are an essential player in central nervous system inflammation. Recent studies have demonstrated that the astrocytic chemokine, CCL2, is associated with microglial activation in vivo. However, CCL2-induced microglial activation has not yet been studied in vitro. The purpose of the current study was to understand the role of astrocyte-derived CCL2 in microglial activation and to elucidate the underlying mechanism(s). Methods: Primary astrocytes were pre-treated with CCL2 siRNA and stimulated with TNF-α. The culture medium (CM) was collected and added to cultures of microglia, which were incubated with and without CCR2 inhibitor. Microglial cells were analyzed by quantitative RT-PCR to determine whether they polarized to the M1 or M2 state. Microglial migratory ability was assessed by transwell migration assay. Results: TNF-α stimulated the release of CCL2 from astrocytes, even if the culture media containing TNF-α was replaced with fresh media after 3 h. CM from TNF-α-stimulated astrocytes successfully induced microglial activation, which was ascertained by increased activation of M1 and enhanced migration ability. In contrast, CM from astrocytes pretreated with CCL2 siRNA showed no effect on microglial activation, compared to controls. Additionally, microglia pre-treated with RS102895, a CCR2 inhibitor, were resistant to activation by CM from TNF-α-stimulated astrocytes. Conclusion: This study demonstrates that the CCL2/CCR2 pathway of astrocyte-induced microglial activation is associated with M1 polarization and enhanced migration ability, indicating that this pathway could be a useful target to ameliorate inflammation in the central nervous system.


2018 ◽  
Vol 51 (3) ◽  
pp. 1276-1286 ◽  
Author(s):  
Feng Liang ◽  
Yu-Gang Wang ◽  
Changcheng Wang

Background/Aims: This study aimed at investigating the effects of metformin on the growth and metastasis of esophageal squamous cell carcinoma (ESCC) in vitro and in vivo. Methods: Two human ESCC cell lines EC9706 and Eca109 were selected and challenged with metformin in this study. Western blot assay was performed to detect th level of Bcl-2, Bax and Caspase-3. Scratch wound assay, transwell assay and Millicell invasion assay were used to assay the invasion and migration of EC9706 and Eca109 cells. Nude mice tumor models were used to assay the growth and lung metastasis of ESCC cells after metformin treatment. The plasma glucose level was also assayed. Results: We found that metformin significantly inhibited proliferation and induced apoptosis of both ESCC cell lines in a dose- and time-dependent manner, and the expression of Bcl-2 was down-regulated and Bax and Caspase-3 were up-regulated. Metformin significantly inhibited the invasion and migration of EC9706 and Eca109 cells (p < 0.05). mRNA and protein levels of MMP-2 and MMP-9 decreased significantly upon treatment with metformin of 10mM for 12, 24 and 48h in a time-dependent manner (p < 0.05). In line with in vitro results, in vivo experiments demonstrated that metformin inhibited tumorigenicity, inhibited lung metastasis and down-regulated the expression of MMP-2 and MMP-9. Moreover, we showed that metformin treatment did not cause significant alteration in liver and renal functions and plasma glucose level. Conclusion: Our study for the first time demonstrated the anti-invasive and anti-metastatic effects of metformin on human ESCC cells both in vitro and in vivo, which might be associated with the down-regulation of MMP-2 and MMP-9. As a whole, our results indicate the potential of metformin to be developed as a chemotherapeutic agent for patients with ESCC and might stimulate future studies on this area.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Qinchen Cao ◽  
Yonggang Shi ◽  
Xinxin Wang ◽  
Jing Yang ◽  
Yin Mi ◽  
...  

AbstractCircular RNAs (circRNAs) are a newly identifed non-coding RNA in many cellular processes and tumours. This study aimed to investigate the role of hsa_circ_0037251, one circRNA generated from several exons of the gene termed METRN, in glioma progression. Through in vitro experiments, we discovered that high expression of hsa_circ_0037251 was related to low expression of the microRNA miR-1229-3p and high expression of mTOR. The over-expressed hsa_circ_0037251 promoted cell proliferation, invasion and migration in glioma, while knockdown of hsa_circ_00037251 promoted cell apoptosis and induced G1 phase arrest. Then, hsa_circ_0037251 was observed to directly sponge miR-1229-3p, and mTOR was identified as a direct target of miR-1229-3p. In addition, knockdown of hsa_circ_0037251 up-regulated the expression of miR-1229-3p and inhibited the expression of mTOR. And overexpression of miR-1229-3p or low-expressed mTOR inhibited the glioma cell progression. Furthermore, transfection with mTOR overexpression vectors can restore the abilities of glioma cell progression even if hsa_circ_00037251 was knocked down using siRNAs. In vivo experiments revealed that hsa_circ_00037251 promoted the growth of xenografted tumours and shortened the survival period. These results indicated that hsa_circ_0037251 may act as a tumour promoter by a hsa_circ_0037251/miR-1229-3p/mTOR axis, and these potential biomarkers may be therapeutic targets for glioma.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Yerin Kim ◽  
Na Youn Lee ◽  
Yoo Sun Kim ◽  
Yuri Kim

Abstract Objectives Tumor-associated macrophages (TAMs) and tumor-associated fibroblasts (TAFs) are consisted of tumor microenvironment (TME), which are involved in cancer progression and metastasis. Interactions within TME induce M2 macrophage phenotype, TAMs, and activate TAFs. β-carotene (BC) is a well-known antioxidant and showed protective effects on several diseases, including cancers. The object of this study is to investigate the anti-colorectal cancer (CRC) effects of BC by controlling macrophage polarization and fibroblast activation. Methods TAMs were induced by treating with phorbol-12-myristate-13-acetate (PMA) and interleukin-4 (IL-4) in U937 cells and TAFs were induced by treating with transforming growth factor-β1 (TGF-β1) in CCD-18Co cells. To understand the effect of TME on cancer cells, HCT116 colon cancer cells were co-cultured with TAM or TAF conditioned media. The effects of BC on the expressions of cancer stem cells (CSCs) markers, epithelial-mesenchymal transition (EMT) markers along with invasion and migration were investigated. To confirm these results, the azoxymethane (AOM) and dextran sodium sulfate (DSS)-induced colitis-associated CRC mice model was used. Results BC decreased M2 macrophage polarization with activating IL-6/STAT3 signaling pathways and suppressed the expressions of fibroblast activation markers and EMT markers. In addition, BC inhibited the expressions of TME-induced CSCs markers and EMT and suppressed cell invasion and migration. Furthermore, BC supplementation suppressed tumorigenesis and the expressions of M2 macrophage-associated markers, including CD206, Arg1, and Ym-1 as well as CSCs markers in vivo. Conclusions BC suppressed CRC by regulating TAMs and TAFs in vitro and in vivo, which indicated the potential therapeutic effects of BC on inflammatory diseases. Funding Sources This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education and Brain Korea 21 Plus.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 758
Author(s):  
Dan Luo ◽  
Wei Ge

Background: Recurrence and distant organ metastasis is a major cause of death in colorectal cancer (CRC); however, the underlying molecular mechanisms regulating this phenomenon are poorly understood. MeCP2 is a key epigenetic regulator and is amplified in many types of cancer. Its role in CRC and the molecular mechanisms underlying its action remain unknown. Methods: We used western blot and immunohistochemistry to detect MeCP2 expression in CRC tissues, and then investigated its biological functions in vitro and in vivo. Chromatin immunoprecipitation, co-immunoprecipitation, and electrophoretic mobility shift assays were used to detect the associations among MeCP2 (Methyl-CpG binding protein 2), SPI1 (Spi-1 Proto-Oncogene), and ZEB1 (Zinc Finger E-Box Binding Homeobox 1). Results: Using the Cancer Genome Atlas and Oncomine databases, we found MeCP2 expression was upregulated in CRC tissues and this upregulation was related to poor prognosis. Meanwhile, MeCP2 depletion (KO/KD) in CRC cells significantly inhibited stem cell frequency, and invasion and migration ability in vitro, and suppressed CRC metastasis in vivo. Mechanistically, we show MeCP2 binds to the transcription factor SPI1, and aids its recruitment to the ZEB1 promoter. SPI1 then facilitates ZEB1 expression at the transcription level. In turn, ZEB1 induces the expression of MMP14, CD133, and SOX2, thereby maintaining CRC stemness and metastasis. Conclusions: MeCP2 is a novel regulator of CRC metastasis. MeCP2 suppression may be a promising therapeutic strategy in CRC.


2020 ◽  
Vol 318 (5) ◽  
pp. C903-C912 ◽  
Author(s):  
Shuai Wu ◽  
Han Chen ◽  
Ling Zuo ◽  
Hai Jiang ◽  
Hongtao Yan

This study explored the effects of the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) on the development of uveal melanoma. Moreover, the role of the MALAT1/microRNA-608 (miR-608)/homeobox C4 (HOXC4) axis was assessed by evaluating the proliferation, invasion, and migration, as well as the cell cycle distribution of uveal melanoma in vitro after knocking down MALAT1 or HOXC4 and/or overexpression of miR-608 in uveal melanoma cells (MUM-2B and C918). Moreover, the effects of the MALAT1/miR-608/HOXC4 axis in uveal melanoma in vivo were further evaluated by injecting the C918 cells into the NOD/SCID mice. HOXC4 was found to be a gene upregulated in uveal melanoma, while knockdown of its expression resulted in suppression of uveal melanoma cell migration, proliferation, and invasion, as well as cell cycle progression. In addition, the upregulation of miR-608 reduced the expression of HOXC4 in the uveal melanoma cells, which was rescued by overexpression of MALAT1. Hence, MALAT1 could upregulate the HOXC4 by binding to miR-608. The suppressed progression of uveal melanoma in vitro by miR-608 was rescued by overexpression of MALAT1. Additionally, in vivo assays demonstrated that downregulation of MALAT1 could suppress tumor growth through downregulation of HOXC4 expression via increasing miR-608 in uveal melanoma. In summary, MALAT1 downregulation functions to restrain the development of uveal melanoma via miR-608-mediated inhibition of HOXC4.


Oncogenesis ◽  
2019 ◽  
Vol 8 (11) ◽  
Author(s):  
Wenjie Xia ◽  
Qixing Mao ◽  
Bing Chen ◽  
Lin Wang ◽  
Weidong Ma ◽  
...  

Abstract The proposed competing endogenous RNA (ceRNA) mechanism suggested that diverse RNA species, including protein-coding messenger RNAs and non-coding RNAs such as long non-coding RNAs, pseudogenes and circular RNAs could communicate with each other by competing for binding to shared microRNAs. The ceRNA network (ceRNET) is involved in tumor progression and has become a hot research topic in recent years. To date, more attention has been paid to the role of non-coding RNAs in ceRNA crosstalk. However, coding transcripts are more abundant and powerful than non-coding RNAs and make up the majority of miRNA targets. In this study, we constructed a mRNA-mRNA related ceRNET of lung adenocarcinoma (LUAD) and identified the highlighted TWIST1-centered ceRNET, which recruits SLC12A5 and ZFHX4 as its ceRNAs. We found that TWIST1/SLC12A5/ZFHX4 are all upregulated in LUAD and are associated with poorer prognosis. SLC12A5 and ZFHX4 facilitated proliferation, migration, and invasion in vivo and in vitro, and their effects were reversed by miR-194–3p and miR-514a-3p, respectively. We further verified that SLC12A5 and ZFHX4 affected the function of TWIST1 by acting as ceRNAs. In summary, we constructed a mRNA-mRNA related ceRNET for LUAD and highlighted the well-known oncogene TWIST1. Then we verified that SLC12A5 and ZFHX4 exert their oncogenic function by regulating TWIST1 expression through a ceRNA mechanism.


Sign in / Sign up

Export Citation Format

Share Document