scholarly journals Estimating the Dielectric Constant of Cellulose Acetate Fiber Aggregation with Its Components Volume Fraction

2017 ◽  
Vol 12 (3) ◽  
pp. 155892501701200 ◽  
Author(s):  
Hanming Lv ◽  
Xiaoye Wang ◽  
Chongqi Ma ◽  
Li Ma

For the sake of studying the relationship between dielectric constant (ε) of cellulose acetate fiber aggregation and volume fraction of its compositions (including cellulose acetate fibers, water and oiling agent), the dielectric spectrum of the aggregation was measured in two forms with a Broadband Dielectric Spectrum (BDS) test system- dry cellulose acetate fibers (dry samples) and oiled cellulose acetate fibers (oiled samples). The measurement data show that dielectric constant has a linear correlation with the volume fraction of cellulose acetate fibers and the oiling agent in the aggregation, and has a non-linear correlation with the volume fraction of water in the aggregation. A function between dielectric constant of the cellulose acetate fiber aggregation and volume fraction of the components was fitted with 1stOpt. The function is in close proximity to the measured data.

2020 ◽  
Vol 38 (3B) ◽  
pp. 104-114
Author(s):  
Samah M. Hussein

This research has been done by reinforcing the matrix (unsaturated polyester) resin with natural material (date palm fiber (DPF)). The fibers were exposure to alkali treatment before reinforcement. The samples have been prepared by using hand lay-up technique with fiber volume fraction of (10%, 20% and 30%). After preparation of the mechanical and physical properties have been studied such as, compression, flexural, impact strength, thermal conductivity, Dielectric constant and dielectric strength. The polyester composite reinforced with date palm fiber at volume fraction (10% and 20%) has good mechanical properties rather than pure unsaturated polyester material, while the composite reinforced with 30% Vf present poor mechanical properties. Thermal conductivity results indicated insulator composite behavior. The effect of present fiber polar group induces of decreasing in dielectric strength, and increasing dielectric constant. The reinforcement composite 20% Vf showed the best results in mechanical, thermal and electrical properties.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2451
Author(s):  
Jianwen Zhang ◽  
Dongwei Wang ◽  
Lujia Wang ◽  
Wanwan Zuo ◽  
Lijun Zhou ◽  
...  

To study the effect of hyperbranched polyester with different kinds of terminal groups on the thermomechanical and dielectric properties of silica–epoxy resin composite, a molecular dynamics simulation method was utilized. Pure epoxy resin and four groups of silica–epoxy resin composites were established, where the silica surface was hydrogenated, grafted with silane coupling agents, and grafted with hyperbranched polyester with terminal carboxyl and terminal hydroxyl, respectively. Then the thermal conductivity, glass transition temperature, elastic modulus, dielectric constant, free volume fraction, mean square displacement, hydrogen bonds, and binding energy of the five models were calculated. The results showed that the hyperbranched polyester significantly improved the thermomechanical and dielectric properties of the silica–epoxy composites compared with other surface treatments, and the terminal groups had an obvious effect on the enhancement effect. Among them, epoxy composite modified by the hyperbranched polyester with terminal carboxy exhibited the best thermomechanical properties and lowest dielectric constant. Our analysis of the microstructure found that the two systems grafted with hyperbranched polyester had a smaller free volume fraction (FFV) and mean square displacement (MSD), and the larger number of hydrogen bonds and greater binding energy, indicating that weaker strength of molecular segments motion and stronger interfacial bonding between silica and epoxy resin matrix were the reasons for the enhancement of the thermomechanical and dielectric properties.


2021 ◽  
Vol 13 (11) ◽  
pp. 2032
Author(s):  
Junchan Lee ◽  
Sunil Bisnath ◽  
Regina S.K. Lee ◽  
Narin Gavili Kilane

This paper describes a computation method for obtaining dielectric constant using Global Navigation Satellite System reflectometry (GNSS-R) products. Dielectric constant is a crucial component in the soil moisture retrieval process using reflected GNSS signals. The reflectivity for circular polarized signals is combined with the dielectric constant equation that is used for radiometer observations. Data from the Cyclone Global Navigation Satellite System (CYGNSS) mission, an eight-nanosatellite constellation for GNSS-R, are used for computing dielectric constant. Data from the Soil Moisture Active Passive (SMAP) mission are used to measure the soil moisture through its radiometer, and they are considered as a reference to confirm the accuracy of the new dielectric constant calculation method. The analyzed locations have been chosen that correspond to sites used for the calibration and validation of the SMAP soil moisture product using in-situ measurement data. The retrieved results, especially in the case of a specular point around Yanco, Australia, show that the estimated results track closely to the soil moisture results, and the Root Mean Square Error (RMSE) in the estimated dielectric constant is approximately 5.73. Similar results can be obtained when the specular point is located near the Texas Soil Moisture Network (TxSON), USA. These results indicate that the analysis procedure is well-defined, and it lays the foundation for obtaining quantitative soil moisture content using the GNSS reflectometry results. Future work will include applying the computation product to determine the characteristics that will allow for the separation of coherent and incoherent signals in delay Doppler maps, as well as to develop local soil moisture models.


Author(s):  
Luis Celaya-García ◽  
Miguel Gutierrez-Rivera ◽  
Elías Ledesma-Orozco ◽  
Salvador M. Aceves

Abstract This article describes the manufacture, testing, and finite element modeling of prototype pressure vessels made of steel and reinforced with high-strength steel wire in the cylindrical part. Vessel prototypes were manufactured with pipe fittings and either no wire reinforcement, one layer of wire reinforcement, or two layers of wire reinforcement, with the purpose of developing an improved understanding of the effect of the wire reinforcement, and the number of reinforcement layers on prototype pressure strength. Pressure tests were conducted for instrumented vessels to determine strength up to 70 bar with a test system equipped with pressure and velocity regulators to guarantee the stability of the supplied flow and improve measurement accuracy and repeatability. Finite element modeling is conducted with the commercial code ANSYS and equivalent orthotropic properties obtained with the unit cell method, assuming a high value for the volume fraction of steel wire, and a matrix with low elastic properties compared with those of the steel wire. The results show that there is an interaction between the cylindrical part and the reinforcing wire, and that this relation is affected by external factors resulting from manufacturing process and material properties. Strain reduction in prototypes with thicker reinforcement is an indicator of the improvement on pressure resistance.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Soumya Sundar Pattanayak ◽  
Soumen Biswas

Abstract The quality of agricultural products can be remotely sensed and enhanced by determining the dielectric properties. This paper studies the dielectric properties of banana leaf and banana peel over the frequency range 1–20 GHz using the open-ended coaxial probe (OCP) method. A new curve fitting model is proposed to characterize the dielectric properties of banana leaf and banana peel. The different moisture content (MC) levels are considered for both banana leaf and banana peel samples and, their dielectric properties are characterized. Further, the banana leaf and banana peel’s measurement data are compared with the data obtained using the proposed model. In addition, Root Mean Square Error (RMSE) and R-squared (R 2) are calculated to validate the performance of the proposed model. In case of banana leaf at 68.26% MC, the dielectric constant achieves the value of R 2 and RMSE of 0.98 and 0.0648, respectively. Similarly, dielectric loss achieves the value of R 2 and RMSE of 0.88 and 0.0795, respectively. Further, for banana peel at 80.89% MC, the dielectric constant achieves the value of R 2 and RMSE of 0.99 and 0.2989, respectively. Similarly, dielectric loss achieves the value of R 2 and RMSE of 0.96 and 0.6132, respectively.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042094088
Author(s):  
Yi Ma ◽  
Minjia Zhang ◽  
Huashuai Luo

A numerical and experimental study was carried out to investigate the two-phase flow fields of the typical three valves used in the multiphase pumps. Under the gas volume fraction conditions in the range of 0%–100%, the three-dimensional steady and dynamic two-phase flow characteristics, pressure drops, and their multipliers of the ball valve, cone valve, and disk valve were studied, respectively, using Eulerian–Eulerian approach and dynamic grid technique in ANSYS FLUENT. In addition, a valve test system was built to verify the simulated results by the particle image velocimetry and pressure test. The flow coefficient CQ (about 0.989) of the disk valve is greater than those of the other valves (about 0.864) under the steady flow with a high Reynolds number. The two-phase pressure drops of the three valves fluctuate in different forms with the vibration of the cores during the dynamic opening. The two-phase multipliers of the fully opened ball valve are consistent with the predicted values of the Morris model, while those of the cone valve and disk valve had the smallest differences with the predicted values of the Chisholm model. Through the comprehensive analysis of the flow performance, pressure drop, and dynamic stability of the three pump valves, the disk valve is found to be more suitable for the multiphase pumps due to its smaller axial space, resistance loss, and better flow capacity.


1990 ◽  
Vol 194 ◽  
Author(s):  
Erica Robertson ◽  
Mary Ann Hill ◽  
Ricardo B. Schwarz

AbstractFusion zone microstructures of an electron beam (EB) welded XDt m Ti–48at%Al + 6.5 vol% TiB2 alloy revealed plate-like precipitates which were absent in the base metal. The volume fraction of this phase increased with increasing cooling rate and correlated with increased weld cracking frequency. To determine whether this phase was a product of solidification from the melt or a product of a solid-state transformation, the microstructures of the welds were compared to those of samples cycled in a Gleeble 1500/20 Thermal-Mechanical Test System which was programmed to simulate the solid-state portion of the weld cooling rates (as predicted by a Rosenthal analysis). The microstructures were characterized by X-ray diffraction, optical and by scanning electron microscopy. The plate-like phase found in the weld microstructures was identified as TiB2 occurring upon rapid solidification of the melted weld metal.


2018 ◽  
Vol 08 (06) ◽  
pp. 1850040 ◽  
Author(s):  
Xuefan Zhou ◽  
Lu Wang ◽  
Guoliang Xue ◽  
Kechao Zhou ◽  
Hang Luo ◽  
...  

The high-performance energy-storage dielectric capacitors are increasingly important due to their wide applications in high power electronics. Here, we fabricated a novel P(VDF-HFP)-based capacitor with surface-modified NBT-[Formula: see text]ST ([Formula: see text], 0.10, 0.26) whiskers, denoted as Dop@NBT-[Formula: see text]ST/P(VDF-HFP). The influences of ST content, fillers’ volume fraction and electric field on the dielectric properties and energy-storage performance of the composites were investigated systematically. The results show that the dielectric constant monotonously increased with the increase of ST content and fillers’ volume fraction. The composite containing 10.0 vol% NBT-0.26ST whiskers possessed a dielectric constant of 39 at 1[Formula: see text]kHz, which was 5.6 times higher than that of pure P(VDF-HFP). It was noticed that the D-E loops of the composites became thinner and thinner with the increase of ST content. Due to the reduced remnant polarization, the composite with 5.0 vol% NBT-0.26ST whiskers achieved a high energy density of 6.18[Formula: see text]J/cm3 and energy efficiency of approximately 57% at a relatively low electric field of 200[Formula: see text]kV/mm. This work indicated that NBT-0.26ST whisker is a kind of potential ceramic filler in fabricating the dielectric capacitor with high discharged energy density and energy efficiency.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 517 ◽  
Author(s):  
G. Papaparaskeva ◽  
M. M. Dinev ◽  
T. Krasia-Christoforou ◽  
R. Turcu ◽  
S. A. Porav ◽  
...  

The preparation procedure of zero magnetic remanence superparamagnetic white paper by means of three-layer membrane configuration (sandwiched structure) is presented. The cellulose acetate fibrous membranes were prepared by electrospinning. The middle membrane layer was magnetically loaded by impregnation with an aqueous ferrofluid of 8 nm magnetic iron oxide nanoparticles colloidally stabilized with a double layer of oleic acid. The nanoparticles show zero magnetic remanence due to their very small diameters and their soft magnetic properties. Changing the ferrofluid magnetic nanoparticle volume fraction, white papers with zero magnetic remanence and tunable saturation magnetization in the range of 0.5–3.5 emu/g were prepared. The dark coloring of the paper owing to the presence of the black magnetite nanoparticles was concealed by the external layers of pristine white cellulose acetate electrospun fibrous membranes.


2019 ◽  
Vol 184 (3-4) ◽  
pp. 342-346
Author(s):  
K Waree ◽  
K Pangza ◽  
N Jangsawang ◽  
P Thongbai ◽  
S Buranurak

Abstract The main focus of this study is to investigate the effect of gamma irradiation on the electrical properties of PVDF/BT nanocomposites. A 1.25 MeV gamma-ray was delivered to the composite films with different BaTiO3-volume fraction, ƒBT = 0–0.4, and with different absorbed doses ranged 50–2500 Gy. Dielectric properties of PVDF/BaTiO3 composites under frequencies ranged from 100 Hz to 10 MHz at room temperature were investigated using an impedance analyser. An increase of 28% in the dielectric constant and a decrease of 15% in the loss tangent were observed in the PVDF/BT 40 vol% nanocomposite film under the accumulated dose of 1500 Gy. Scanning electron microscopy provided no significant difference in microscopic structures between non-exposed and gamma-exposed materials. Fourier-transform infra-red spectroscopy provides gamma-induced transition of PVDF-crystalline forms as alpha-PVDF into beta-PVDF/gamma-PVDF which has been reported as one of the main factors affected the change of dielectric constant in polymers. UV–visible spectrophotometry has been observed gamma-induced red shift in the absorption edge of the PVDF/BT 40 vol% nanocomposite film from 400 nm to 420 nm under the accumulated dose of 1500 Gy. However, a blue shift is observed with increase the accumulated dose up to 2000 Gy.


Sign in / Sign up

Export Citation Format

Share Document