Enforced expression of miR-125b affects myelopoiesis by targeting multiple signaling pathways

Blood ◽  
2011 ◽  
Vol 117 (16) ◽  
pp. 4338-4348 ◽  
Author(s):  
Ewa Surdziel ◽  
Maciej Cabanski ◽  
Iris Dallmann ◽  
Marcin Lyszkiewicz ◽  
Andreas Krueger ◽  
...  

Abstract MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression by sequence-specific targeting of multiple mRNAs. Although lineage-, maturation-, and disease-specific miRNA expression has been described, miRNA-dependent phenotypes and miRNA-regulated signaling in hematopoietic cells are largely unknown. Combining functional genomics, biochemical analysis, and unbiased and hypothesis-driven miRNA target prediction, we show that lentivirally over-expressed miR-125b blocks G-CSF–induced granulocytic differentiation and enables G-CSF–dependent proliferation of murine 32D cells. In primary lineage-negative cells, miR-125b over-expression enhances colony-formation in vitro and promotes myelopoiesis in mouse bone marrow chimeras. We identified Stat3 and confirmed Bak1 as miR-125b target genes with approximately 30% and 50% reduction in protein expression, respectively. However, gene-specific RNAi reveals that this reduction, alone and in combination, is not sufficient to block G-CSF–dependent differentiation. STAT3 protein expression, DNA-binding, and transcriptional activity but not induction of tyrosine-phosphorylation and nuclear translocation are reduced upon enforced miR-125b expression, indicating miR-125b–mediated reduction of one or more STAT3 cofactors. Indeed, we identified c-Jun and Jund as potential miR-125b targets and demonstrated reduced protein expression in 32D/miR-125b cells. Interestingly, gene-specific silencing of JUND but not c-JUN partially mimics the miR-125b over-expression phenotype. These data demonstrate coordinated regulation of several signaling pathways by miR-125b linked to distinct phenotypes in myeloid cells.

2021 ◽  
Author(s):  
Ravi BHUSHAN ◽  
Anjali Rani ◽  
Deepali Gupta ◽  
Akhtar Ali ◽  
Anima Tripathi ◽  
...  

Abstract Aims/hypothesisSmall non-coding micro RNAs (miRNAs) are indicated in various metabolic processes and play a critical role in disease pathology, including gestational diabetes mellitus (GDM). The purpose of this study was to examine the altered expression of miRNAs and their target genes in placental tissue (PL), cord blood (CB), and maternal blood (MB) of matched non-glucose tolerant (NGT) and GDM mother. MethodsIn a case-control study, micro-RNA was quantified from forty-five serum (MB n = 15, CB n = 15, and PL n = 15) and matched placental tissue using stem-loop RT-qPCR followed by target prediction, network construction and functional and pathways enrichment analysis. Further, target genes were verified in-vitro through transfection and RT-qPCR. ResultsFive miRNAs, namely hsa-let 7a-5P, hsa-miR7-5P, hsa-miR9-5P, hsa-miR18a-5P, and hsa-miR23a-3P, were significantly over-expressed (p < 0.05) in all three samples namely PL, CB, and MB of GDM patients. However, the sample-wise comparison reveals higher expression of miRNA 7 in MB while lowest in CB than control. Furthermore, a comparison of fold change expression of target genes discloses a lower expression of IRS1, IRS2, and RAF1 in MB while comparatively higher expression of NRAS in MB and CB. In-vitro validation reveals lower expression of IRS1/2 and RAF1 in response to overexpression of miR-7 and vice-versa. Thus it is evident that increased miRNA7 expression causes down-regulation of its target genes IRS1, IRS2, and RAF1 in GDM mother compared to control. Further, target prediction, pathway enrichment, and hormone analysis (significantly higher FSH & LH in MB of GDM compared to NGT) revealed the insulin signaling, inflammatory and GnRH signaling as major pathways regulated by miRNA7. Conclusions/InterpretationsThus, an elevated level of miRNA7 may be associated with the progression of GDM by altering the multiple pathways like insulin, GnRH, and inflammatory signaling pathways via targeting IRS1, IRS2, and RAF1, implicating a new therapeutic target for GDM.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Kuijie Liu ◽  
Hua Zhao ◽  
Hongliang Yao ◽  
Sanlin Lei ◽  
Zhendong Lei ◽  
...  

MicroRNAs are a class of small, noncoding RNAs that function as critical regulators of gene expression by targeting mRNAs for translational repression or degradation. In this study, we demonstrate that expression of microRNA-124 (miR-124) is significantly downregulated in colorectal cancer tissues and cell lines, compared to the matched adjacent tissues. We identified and confirmed inhibitor of apoptosis-stimulating protein of p53 (iASPP) as a novel, direct target of miR-124 using target prediction algorithms and luciferase reporter gene assays. Overexpression of miR-124 suppressed iASPP protein expression, upregulated expression of the downstream signaling molecule nuclear factor-kappa B (NF-κB), and attenuated cell viability, proliferation, and colony formation in SW480 and HT-29 colorectal cancer cells in vitro. Forced overexpression ofiASPPpartly rescued the inhibitory effect of miR-124 on SW480 and HT29 cell proliferation. Taken together, these findings shed light on the role and mechanism of action of miR-124, indicate that the miR-124/iASPP axis can regulate the proliferation of colorectal cancer cells, and suggest that miR-124 may serve as a potential therapeutic target for colorectal cancer.


2021 ◽  
Author(s):  
Marta Słoniecka ◽  
André Vicente ◽  
Berit Byström ◽  
Fátima Pedrosa Domellöf

ABSTRACTPURPOSETo establish an in vitro model of aniridia-related keratopathy (ARK) using CRISPR/Cas9 engineered human keratocytes with mutations in the PAX6 gene, and to study the Notch Homolog 1, Translocation-Associated (Notch1), sonic hedgehog (SHH), mammalian target of rapamycin (mTOR), and Wnt/β-catenin signaling pathways in the PAX6 mutant keratocytes.METHODSPrimary human keratocytes were isolated from healthy corneas. Keratocytes were transduced with Cas9 lentiviral particles in order to create cells stably expressing Cas9 nuclease. Lentiviral particles carrying PAX6 sgRNA were transduced into the Cas9 keratocytes creating mutants. Analysis of signaling pathways was assessed by RT-qPCR for gene expression and western blot for protein expression.RESULTSHuman keratocytes stably expressing Cas9 nuclease were created. Keratocytes carrying PAX6 gene mutation were successfully generated. PAX6 mutant keratocytes showed modified expression patterns of extracellular matrix components such as collagens and fibrotic markers. Analysis of the Notch1, SHH, mTOR, and Wnt/β-catenin signaling pathways in the PAX6 mutant keratocytes revealed altered gene and protein expression of the key players involved in these pathways.CONCLUSIONSA properly functioning PAX6 gene in keratocytes is crucial for the regulation of signaling pathways important for cell fate determination, proliferation, and inflammation. Pax6 mutation in the in vitro settings leads to changes in these pathways which resemble those found in corneas of patients with ARK.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Gopinath Sutendra ◽  
Sebastien Bonnet ◽  
Paulette Wright ◽  
Peter Dromparis ◽  
Alois Haromy ◽  
...  

Nogo was first identified as an inhibitor of neuronal axonal regeneration. Recently, Nogo-B was implicated in the proliferative and anti-apoptotic remodeling in systemic arteries; reduced Nogo-B expression was seen in remodeled mouse femoral arteries following injury. Pulmonary arterial hypertension (PAH) is also characterized by proliferative/anti-apoptotic remodeling in pulmonary arteries (PA), sparing systemic vessels. PAH PA smooth muscle cells (PASMC) are characterized by mitochondrial hyperpolarization (increased ΔΨm), decreased production of reactive oxygen species (ROS) (suppressing mitochondria-dependent apoptosis), down-regulation of Kv1.5 and activation of the transcription factor NFAT (promoting contraction and proliferation). We found that in contrast to systemic vessels, Nogo-B expression is significantly increased in vivo and in vitro in PAs and PASMCs from patients (n=6) and mice (n=42) with PAH, compared to normals. We hypothesized that Nogo is involved in the pathogenesis of PAH . Nogo −/− mice (n=7) had a normal phenotype and, in contrast to Nogo +/+ , did not develop chronic hypoxia (CH)-induced PAH assessed invasively (catheterization, RV/LV+Septum) and non-invasively (pulmonary artery acceleration time and treadmill performance) (n=7, Table ). CH- Nogo +/+ PASMC had the expected increase in ΔΨm (measured by TMRM), decreased ROS (MitoSOX), increased [Ca ++ ] i (FLUO3), decreased Kv1.5 (immunohistochemistry) and NFAT activation (nuclear translocation). None of these changes occurred in CH- Nogo −/− PASMC while all were induced in normoxic Nogo +/+ PASMC by adenoviral over-expression of Nogo-B . Heterozygote CH- Nogo +/− (n=7) values were between Nogo −/− and Nogo +/+ suggesting a gene dose-dependent effect. Nogo is over-expressed in human and rodent PAH and induces critical features of the PAH phenotype. Nogo targeting might represent a novel and selective therapeutic strategy for PAH. Table


2015 ◽  
Vol 35 (3) ◽  
pp. 983-996 ◽  
Author(s):  
Yingmin Yao ◽  
Chanwei Dou ◽  
Zhongtang Lu ◽  
Xin Zheng ◽  
Qingguang Liu

Background & Aims: To investigate the expression and prognostic value of MACC1 in patients with HCC and identify the mechanism by which MACC1 inhibits HCC cell apoptosis. Methods: MACC1 and p-AKT expression was studied using immunohistochemistry of both HCC tissues and adjacent liver tissues. qRT-PCR and western immunoblotting were used to examine the expression of target genes at the mRNA and protein levels, respectively. The MTT assay was used to assess cell viability, and cell apoptosis was determined by DAPI staining, Annexin V/PI staining and Caspase 3/7 assay. Nude mice were used to perform in vivo experiments. Results: The overexpression of MACC1 was found in HCC tissues and was correlated with poor postsurgical prognosis. There was a positive relationship between MACC1 and p-AKT expression in HCC tissues. In vitro experiments showed that MACC1 repressed HCC cell apoptosis and promoted cell growth. Knockdown of c-MET abolished the anti-apoptotic function of MACC1. Next, MACC1 was verified to activate PI3K/AKT signaling by sensitizing HGF/c-MET signaling in HCC. MACC1 overexpression enhanced the HGF-driven phosphorylation of BAD, Caspase 9 and FKHRL1 and inhibited their pro-apoptotic functions in HCC cells. Finally, MACC1 was shown to inhibit cell apoptosis and promote HCC growth in vivo. Conclusions: This investigation revealed that MACC1 overexpression predicted worse prognosis after liver resection, which was attributed to the repression of HCC cell apoptosis via a molecular mechanism in which MACC1 accelerated the activation of the HGF/c-MET/PI3K/AKT pathway and phosphorylated BAD, Caspase 9 and FKHRL1, ultimately preventing their nuclear translocation and their pro-apoptotic function.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Longlong Li ◽  
Yao Yao ◽  
Zhihao Jiang ◽  
Jinlong Zhao ◽  
Ji Cao ◽  
...  

Dehydroepiandrosterone (DHEA) is a popular dietary supplement that has well-known benefits in animals and humans, but there is not enough information about the mechanisms underlying its effects. The present study aimed at investigating these mechanisms through in vitro experiments on the effects of DHEA on rat liver BRL-3A cells exposed to oxidative stress through H2O2. The findings showed that DHEA increased the antioxidant enzyme activity, decreased ROS generation, and inhibited apoptosis in H2O2-treated cells. These effects of DHEA were not observed when the cells were pretreated with known antagonists of sex hormones (Trilostane, Flutamide, or Fulvestrant). Furthermore, treatment with estradiol and testosterone did not have the same protective effects as DHEA. Thus, the beneficial effects of DHEA were associated with mechanisms that were independent of steroid hormone pathways. With regard to the mechanism underlying the antiapoptotic effect of DHEA, pretreatment with DHEA was found to induce a significant decrease in the protein expression of Bax and caspase-3 and a significant increase in the protein expression of PI3K and p-Akt in H2O2-treated BRL-3A cells. These effects of DHEA were abolished when the cells were pretreated with the PI3K inhibitor LY294002. No changes were observed on the p-ERK1/2, p-p38, and p-JNK protein levels in H2O2-induced BRL-3A cells pretreated with DHEA. In conclusion, our data demonstrate that DHEA protects BRL-3A cells against H2O2-induced oxidative stress and apoptosis through mechanisms that do not involve its biotransformation into steroid hormones or the activation of sex hormone receptors. Importantly, the protective effect of DHEA on BRL-3A cells was mainly associated with PI3K/Akt signaling pathways, rather than MAPK signaling pathways.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Cinzia Maria Chinnici ◽  
Giandomenico Amico ◽  
Alessia Gallo ◽  
Gioacchin Iannolo ◽  
Nicola Cuscino ◽  
...  

The use of cell secreted factors in clinical settings could be an alternative to conventional cell therapy, with the advantage of limiting concerns generally associated with traditional cell transplantation, such as tumorigenicity, immunoreactivity, and carrying of infections. Based on our published data, we predict a potential role for extracellular vesicles (EVs) in contributing to the proangiogenic activity of human fetal dermal cell secretome. Depletion of nanosized EVs from secretome significantly impaired its ability to induce formation of mesh-like structures in vitro. The isolated EVs were characterized for size and concentration by nanoparticle tracking analysis, and for protein markers (Rab5+, Alix+, CD63+, and calnexin-). The microRNA profile of EVs revealed 87 microRNAs significantly upregulated (≥15-fold increase) in fetal compared to adult dermal cell-derived EVs. Interestingly, these upregulated microRNAs included microRNAs with a validated role in angiogenesis according to literature. Moreover, the DIANA-TarBase v7.0 analysis confirmed enrichment in the KEGG signaling pathways associated with angiogenesis and wound healing, with the identification of putative target genes including thrombospondin 1. To validate the in silico data, EVs were also characterized for total protein contents. When tested in in vitro angiogenesis, fetal dermal cell-derived EVs were more effective than their adult counterpart in inducing formation of complete mesh-like structures. Furthermore, treatment of fibroblasts with fetal dermal-derived EVs determined a 4-fold increase of thrombospondin 1 protein amounts compared with the untreated fibroblasts. Finally, visualization of CSFE-labeled EVs in the cytosol of target cells suggested a successful uptake of these particles at 4-8 hours of incubation. We conclude that EVs are important contributors of the proangiogenic effect of fetal dermal cell secretome. Hence, EVs could also serve as vehicle for a successful delivery of microRNAs or other molecules of therapeutic interest to target cells.


2020 ◽  
Vol 23 (3) ◽  
pp. 165-177 ◽  
Author(s):  
Bhaskar Roy ◽  
Michael Dunbar ◽  
Juhee Agrawal ◽  
Lauren Allen ◽  
Yogesh Dwivedi

Abstract Background Recent studies suggest that microRNAs (miRNAs) can participate in depression pathogenesis by altering a host of genes that are critical in corticolimbic functioning. The present study focuses on examining whether alterations in the miRNA network in the amygdala are associated with susceptibility or resiliency to develop depression-like behavior in rats. Methods Amygdala-specific altered miRNA transcriptomics were determined in a rat depression model following next-generation sequencing method. Target prediction analyses (cis- and trans) and qPCR-based assays were performed to decipher the functional role of altered miRNAs. miRNA-specific target interaction was determined using in vitro transfection assay in neuroblastoma cell line. miRNA-specific findings from the rat in vivo model were further replicated in postmortem amygdala of major depressive disorder (MDD) subjects. Results Changes in miRNome identified 17 significantly upregulated and 8 significantly downregulated miRNAs in amygdala of learned helpless (LH) compared with nonlearned helpless rats. Prediction analysis showed that the majority of the upregulated miRNAs had target genes enriched for the Wnt signaling pathway. Among altered miRNAs, upregulated miR-128-3p was identified as a top hit based on statistical significance and magnitude of change in LH rats. Target validation showed significant downregulation of Wnt signaling genes in amygdala of LH rats. A discernable increase in expression of amygdalar miR-128-3p along with significant downregulation of key target genes from Wnt signaling (WNT5B, DVL, and LEF1) was noted in MDD subjects. Overexpression of miR-128-3p in a cellular model lead to a marked decrease in the expression of Dvl1 and Lef1 genes, confirming them as validated targets of miR-128-3p. Additional evidence suggested that the amygdala-specific diminished expression of transcriptional repressor Snai1 could be potentially linked to induced miR-128-2 expression in LH rats. Furthermore, an amygdala-specific posttranscriptional switching mechanism could be active between miR-128-3p and RNA binding protein Arpp21 to gain control over their target genes such as Lef1. Conclusion Our study suggests that in amygdala a specific set of miRNAs may play an important role in depression susceptibility, which could potentially be mediated through Wnt signaling.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ping Yang ◽  
Haifeng He ◽  
Shangfu Xu ◽  
Ping Liu ◽  
Xinyu Bai

Objective. Hua-Feng-Dan (HFD) is a Chinese medicine for stroke. This study is to predict and verify potential molecular targets and pathways of HFD against stroke using network pharmacology. Methods. The TCMSP database and TCMID were used to search for the active ingredients of HFD, and GeneCards and DrugBank databases were used to search for stroke-related target genes to construct the “component-target-disease” by Cytoscape 3.7.1, which was further filtered by MCODE to build a core network. The STRING database was used to obtain interrelationships by topology and to construct a protein-protein interaction network. GO and KEGG were carried out through DAVID Bioinformatics. Autodock 4.2 was used for molecular docking. BaseSpace was used to correlate target genes with the GEO database. Results. Based on OB ≥ 30% and DL ≥ 0.18, 42 active ingredients were extracted from HFD, and 107 associated targets were obtained. PPI network and Cytoscape analysis identified 22 key targets. GO analysis suggested 51 cellular biological processes, and KEGG suggested that 60 pathways were related to the antistroke mechanism of HFD, with p53, PI3K-Akt, and apoptosis signaling pathways being most important for HFD effects. Molecular docking verified interactions between the core target (CASP8, CASP9, MDM2, CYCS, RELA, and CCND1) and the active ingredients (beta-sitosterol, luteolin, baicalein, and wogonin). The identified gene targets were highly correlated with the GEO biosets, and the stroke-protection effects of Xuesaitong in the database were verified by identified targets. Conclusion. HFD could regulate the symptoms of stroke through signaling pathways with core targets. This work provided a bioinformatic method to clarify the antistroke mechanism of HFD, and the identified core targets could be valuable to evaluate the antistroke effects of traditional Chinese medicines.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2180-2180
Author(s):  
Yaling Qiu ◽  
Dazhong Zhuang ◽  
Alexandra MacRae ◽  
Fan Dong

Abstract Granulocytic progenitor cells become progressively less capable of proliferation and survival with terminal differentiation. Granulocyte colony-stimulating factor (G-CSF) is the major regulator of granulopoiesis and stimulates the activation of multiple signaling pathways including the signal transducer and activator of transcription 5 (Stat5) pathway. Little is known about the activation status of G-CSF-stimulated signaling pathways at the distinct stages of granulocytic differentiation. When myeloid 32D cells transfected with the G-CSF receptor were induced to differentiate with G-CSF, Stat5 activation in response to G-CSF was gradually attenuated. Activation of other signaling molecules including Stat1, Stat3, Erk1/2, JNK and p38 was not altered significantly. Stat5 activation was also downregulated in multipotent FDCP-mix cells, which differentiated into mature granulocytes upon induction with G-CSF, but not in pro-B BaF/3 transfected with the G-CSF receptor, which showed no terminal granulocytic differentiation in response to G-CSF, suggesting that the effect of G-CSF is cell type specific. Attenuated activation of Stat5 correlated with reduced Stat5 protein levels, which was associated with expression of a protease activity capable of degrading Stat5 protein in vitro. The Stat5 protease activity was upregulated when myeloid cells were induced to differentiate with G-CSF, but its upregulation by G-CSF was blocked upon expression of leukemogenic proteins Bcr-Abl and Tel-Jak2. The activity of the Stat5 protease was inhibited partially by PMSF and completely by a1-antitrypsin, suggesting that it belongs to the serine family of protease. Our data provide the first evidence that a Stat5 protease activity is upregulated by G-CSF and may have important implications for understanding the molecular mechanism by which G-CSF orchestrates granulopoiesis.


Sign in / Sign up

Export Citation Format

Share Document