Gene Expression Reveals Two Distinct Biological Groups within T-Cell Prolymphocytic Leukaemia.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4366-4366
Author(s):  
Nnenna Osuji ◽  
Ilaria Del Giudice ◽  
Tim Dexter ◽  
Estella Matutes ◽  
Vasantha Brito-Babapulle ◽  
...  

Abstract T-cell prolymphocytic leukemia (T-PLL) is rare and presents with widespread disease. Indolent presentations are seen but eventually progress. The disease shows marked chemoresistance and is best treated with the monoclonal anti-CD52 antibody (CAMPATH). Prolymphocytes show a post-thymic phenotype and are CD4+CD8− (65%), CD4−CD8+ (10%) or CD4+CD8+ (25%). This double positive phenotype, raises questions about the putative ontology of T-PLL. Morphological heterogeneity, with typical (75%), small cell (20%) and cerebriform/sezary-like variants (5%) is described. Inversions or reciprocal translocations of chromosome 14 involving breakpoints at q11 (TCR a/d) and q32.1 (TCL1 and TCL1b) are seen (~ 80%). Other common abnormalities involve chromosome 8, translocation (X;14)(q28;q11) and, ATM (11q23). We investigated the clinico-pathological heterogeneity in T-PLL, at the level of the transcriptome and evaluated the ability of gene expression profiling to sub-classify T-PLL. Total RNA was extracted from blood prolymphocytes (>92% purity) of 22 patients. cDNA synthesis followed by biotin-labelled cRNA synthesis was carried out as per Affymetrix protocols. Fragmented cRNA was hybridized to the Human U133 PLUS2 GeneChip array (54K probes). Microarray services were provided by MRC geneservice (UK HGMP Resource Centre). Hierarchical clustering of samples was performed using a filtered gene set (12,456) and >4 different algorithims. Prediction analysis for micoarray (PAM) and significance analysis of microarray (SAM) were used to evaluate class performance, and partition genes using pre-defined labels of immunophenotype, karyotype, response and morphology. Validation was performed by RT-PCR in a subset of genes.Unsupervised analysis robustly and reproducibly partitioned samples into 2 groups; A (n=8) and B (n=14). SAM analysis identified 4487 differentially expressed transcripts (false discovery rates <1%), >40% of which showed >2-fold difference in expression between the groups. There was no statistical difference in age, immunophenotype or karyotype betweeen groups, however, differential response to CAMPATH was seen. PAM analysis refined a sub-group of ~123 genes which most efficiently differentiated these groups. Group A showed significantly higher rates of non-response and progressive disease as compared to group B (n=14, p=0.036). Key differences related to apoptosis and cell-cycle associated gene expression. Down regulation of caspases (CASP1, CASP2,CASP4, CARD8 and CASP8AP2), cyclins (CCNC, CCND2, CCND3, CCNG1, CCNI, CCNT2), bcl-2, HDAC1, HIPK2, IL6R and ATM were frequent in group A with upregulation of genes implicated in NF-kB (TRAF4, SQSTM1) and TNF pathways (LMNA, ARTS-1), as well as transcription factors such as ATF-3. CD52 expression was ~2-fold higher in group B and may explain in part, differential responses to CAMPATH. RT-PCR validated gene expression data for LMNA and ATF-3. Despite the small numbers, algorithim-independent segregation into 2 consistent groups, in conjunction with the magnitude of gene differences, presence of many mutually exclusive divisions, and low prediciton errors, imply that the 2 identified profiles arise from fundamental differences at a regulatory level and thus likely represent a generalisable classification for T-PLL. Differential responses to CAMPATH may be a sub-feature of this grouping.

2018 ◽  
Author(s):  
Kun Zhao ◽  
Junxin Lin ◽  
Bingbing Wu ◽  
Guofei Sun ◽  
Chengrui An ◽  
...  

AbstractObjectiveTo identity osteoarthritis(OA) subtypes with gene expression of peripheral blood mononuclear cells.MethodsGene expression data (GSE48556) of Genetics osteoARthritis and Progression (GARP) study was downloaded from Gene Expression Omnibus. Principal component analysis and unsupervised clustering were analyzed to identify subtypes of OA and compare major KEGG pathways and cell type enrichment using GSEA and xCell. Classification of subtypes were explored by the utilization of support vector machine.ResultsUnsupervised clustering identified two distinct OA subtypes: Group A comprised of 60 patients (56.6%) and Group B had 46 patients (43.3%). A classifier including nine genes and CD4+T cell and Regulatory T cell flow cytometry could accurately distinguish patients from each group (area under the curve of 0.99 with gene expression). Group A is typical degenerative OA with glycosaminoglycan biosynthesis and apoptosis. Group B is related to Graft versus host disease and antigen processing and presentation, which indicated OA has a new type of “Antigen processing and presentation” similarly as that of RA.ConclusionOA can be clearly classified into two distinguished subtypes with blood transcriptome, which have important significance on the development of precise OA therapeutics.


Author(s):  
Stefano Sartini ◽  
Laura Massobrio ◽  
Ombretta Cutuli ◽  
Paola Campodonico ◽  
Cristina Bernini ◽  
...  

COVID-19 respiratory failure is a life-threatening condition. Oxygenation targets were evaluated in a non-ICU setting. In this retrospective, observational study, we enrolled all patients admitted to the University Hospital of Genoa, Italy, between 1 February and 31 May 2020 with an RT-PCR positive for SARS-CoV-2. PaO2, PaO2/FiO2 and SatO2% were collected and analyzed at time 0 and in case of admission, patients who required or not C-PAP (groups A and B) were categorized. Each measurement was correlated to adverse outcome. A total of 483 patients were enrolled, and 369 were admitted to hospital. Of these, 153 required C-PAP and 266 had an adverse outcome. Patients with PaO2 <60 and >100 had a higher rate of adverse outcome at time 0, in groups A and B (OR 2.52, 3.45, 2.01, respectively). About the PaO2/FiO2 ratio, the OR for < 300 was 3.10 at time 0, 4.01 in group A and 4.79 in group B. Similar odds were found for < 200 in any groups and < 100 except for group B (OR 11.57). SatO2 < 94% showed OR 1.34, 3.52 and 19.12 at time 0, in groups A and B, respectively. PaO2 < 60 and >100, SatO2 < 94% and PaO2/FiO2 ratio < 300 showed at least two- to three-fold correlation to adverse outcome. This may provide simple but clear targets for clinicians facing COVID-19 respiratory failure in a non ICU-setting.


2020 ◽  
Author(s):  
Xiangyun Yin ◽  
Jixiu Zhao ◽  
Jian Jiang ◽  
Hongmin Xi ◽  
Xianghong Li ◽  
...  

Abstract Background:Premature infant is a significant health care burden. White matter damage (WMD) is a leading cause of acute mortality and chronic morbidity in preterm. Xenon (Xe) intervention was given to the 3-day-old neonatal rats with brain white matter injury. By detecting the changes in the expression level of microRNA210 and hypoxia inducible factor 1α (HIF-1α) in brain tissue before and after xenon intervention, we can research the molecular basis and the mechanism of neuroprotective on effect of xenon on brain white matter damage in neonatal rats.Methods:Three-day-old SD rats were randomly divided into sham group(Group A, n=24), lipopolysaccharide(LPS)+hypoxia-ischemia(HI) group (Group B, n=24) and LPS+HI+Xe group ( n=72). The onset of Xe inhalation started at 0,2 and 5 hours in subgroups C,D,and E respectively.We investigated the neurobehavioral deficits by performing TUNEL and hematoxylin and eosin (HE) staining and examining the expression of miR-210and HIF-1α in brain tissues via RT-PCR and western blot. Results: Xe treatment improved the histological alterations and decreased the number of apoptotic cells in group C pups.Compared to group A,Detection of miR-210 level by RT-PCR. the expression level of miR-210 in neonatal rats' periventricular tissue increased significantly at all time points in group B (p<0.05).While the expression level of miR-210 in brain tissues of group B was significantly lower at 48h and 72h than that of group C(p<0.05).Similarly,Detection of HIF-1α protein by Western blot. The level of HIF-1α protein in group B brain tissues was significantly higher than that of group A at each time point (p<0.05), Xe treatment resulted in a marked increase in HIF-1α in C,D, and E subgroups (P < 0.05, compared to group B).Conclusions: These results demonstrate that the expression of HIF-1α and miR-210 increased in periventricular tissues and Xe could relieve the white matter damage by up-regulating the expression of HIF-1α and its target gene miR-210.The Xe therapeutic time window was within 5 hours after intervention, the sooner the better.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2277-2277
Author(s):  
Daruka Mahadevan ◽  
Catherine Spier ◽  
Kimiko Della Croce ◽  
Susan Miller ◽  
Benjamin George ◽  
...  

Abstract Background: WHO classifies NHL into B (~85%) and T (~15%) cell subtypes. Of the T-cell NHL, peripheral T-cell NHL (PTCL, NOS) comprises ~6–10% with an inferior response and survival to chemotherapy compared to DLBCL. Gene Expression Profiling (GEP) of DLBCL has provided molecular signatures that define 3 subclasses with distinct survival rates. The current study analyzed transcript profiling in PTCL (NOS) and compared and contrasted it to GEP of DLBCL. Methods : Snap frozen samples of 5 patients with PTCL (NOS) and 4 patients with DLBCL were analyzed utilizing the HG-U133A 2.0 Affymetrix array (~18,400 transcripts, 22,000 probe sets) after isolating and purifying total RNA (Qiagen, RNAeasy). The control RNA samples were isolated from normal peripheral blood (PB) B-cell (AllCell, CA), normal PB T-cell (AllCell, CA) and normal lymph node (LN). Immunohisto-chemistry (IHC) confirmed tumor lineage and quantitative real time RT-PCR was performed on selected genes to validate the microarray study. The GEP data were processed and analyzed utilizing Affymetrix MAS 5.0 and GeneSpring 5.0 software. Our data were analyzed in the light of the published GEP of DLBCL (lymphochip and affymtrix) and the validated 10 prognostic genes (by IHC and real time RT-PCR). Results : Data are represented as “robust” increases or decreases of relative gene expression common to all 5 PTCL or 4 DLBCL patients respectively. The table shows the 5 most over-expressed genes in PTCL or DLBCL compared to normal T-cell (NT), B-cell (NB) and lymph node (LN). PTCL vs NT PTCL vs LN DLVCL vs NB DLBCL vs LN COL1A1 CHI3L1 CCL18 CCL18 CCL18 CCL18 VNN1 IGJ CXCL13 CCL5 UBD VNN1 IGFBP7 SH2D1A LYZ CD52 RARRES1 NKG7 CCL5 MAP4K1 Of the top 20 increases, 3 genes were common to PTCL and DLBCL when compared to normal T and B cells, while 11 were common when compared to normal LN. Comparison of genes common to normal B-cell and LN Vs DLBCL or PTCL and normal T-cell and LN Vs PTCL or DLBCL identified sets of genes that are commonly and differentially expressed in PTCL and/or DLBCL. The 4 DLBCL patients analyzed express 3 of 10 prognostic genes compared to normal B-cells and 7 of 10 prognostic genes compared to normal LN and fall into the non-germinal center subtype. Quantitative real time RT-PCR on 10 functionally distinct common over-expressed genes in the 5 PTCL (NOS) patients (Lumican, CCL18, CD14, CD54, CD106, CD163, α-PDGFR, HCK, ABCA1 and Tumor endothelial marker 6) validated the microarray data. Conclusions: GEP of PTCL (NOS) and DLBCL in combination with quantitative real time RT-PCR and IHC have identified a ‘molecular signature’ for PTCL and DLBCL based on a comparison to normal (B-cell, T-cell and LN) tissue. The categorization of the GEP based on the six hallmarks of cancer identifies a ‘tumor profile signature’ for PTCL and DLBCL and a number of novel targets for therapeutic intervention.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2898-2898
Author(s):  
Michael Lübbert ◽  
Michael Stock ◽  
Tobias Berg ◽  
Manfred Fliegauf

Abstract The chromosomal translocation (8;21) fuses the AML1 gene on chromosome 21 and the ETO gene on chromosome 8 in human acute myeloid leukemias, resulting in expression of the chimeric transcription factor AML1/ETO. AML1/ETO-mediated dysregulation of target genes critical for hematopoietic differentiation and proliferation is thought to contribute to the leukemic phenotype. Several mechanisms, including recruitment of histone deacetylases (HDACs) to AML1 target genes, may be responsible for altered gene expression. We used an ecdysone-inducible expression system in the human monoblastic U-937 cell line to isolate genes that were differentially expressed upon induction of AML1/ETO expression. By representational difference analysis (cDNA-RDA), we identified 26 genes whose expression levels were significantly modulated following AML1/ETO induction for 48 hours. None of these genes has previously been described as a target of AML1, ETO or AML1/ETO. One gene down-regulated by AML1/ETO in vitro, Williams Beuren Syndrome critical region 5 (WBSCR5), was expressed in primary t(8;21) negative AML blasts but not in primary t(8;21) positive AML blasts, strongly implying a role of this gene in the phenotype of t(8;21) positive AML. WBSCR5 is part of the critical region located on chromosome 7q11.23 that is deleted in the Williams Beuren syndrome (OMIM 194050), an autosomal dominant disorder comprising vascular, neurological, behavioral and skeletal abnormalities. WBSCR5 has recently been shown to have a role in the activation and differentiation of B cells (Brdicka et al., J. Exp. Med. 196:1617, 2002) and thus was also termed Non-T cell activation linker.. WBSCR5 as well as seven other regulated genes were further studied using all-trans-retinoic acid (ATRA), an inducer of differentiation of U-937 cells, and Trichostatin A (TSA), an HDAC inhibitor. WBSCR5 and two other out of these eight genes were regulated during ATRA-induced monocytic differentiation of U-937 cells, however none of them antagonistically, upon both ATRA-treatment and AML1/ETO-induction. Since repression of WBSCR5 might be mediated by recruitment of HDACs through the fusion gene, cells were treated with TSA prior to transgene induction. However, the AML1/ETO-associated dysregulation of WBSCR5 gene expression (as well as that of the other seven genes studied) was not mediated by a TSA-sensitive mechanism. The identified genes provide a useful model to study the mechanism by which the AML1/ETO fusion protein exerts its function in transcriptional dysregulation in acute myeloid leukemia. The role of WBSCR5 in malignant hematopoietic cells warrants further study.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4875-4875
Author(s):  
Zhenhua Qiao ◽  
Fang Ye ◽  
Lei Zu

Abstract Objective: To explore the effect of costimulatory molecular and CD25 expressed on peripheral CD4+ T lymphocytes on graft-versus-host disease(GVHD) after allogeneic hematopoietic stem cell transplantation(allo-HSCT). Methods: 1. The 21 patients who suffered of hematology diseases or malignant solid tumors and were underwent allo-HSCT and 10 normal individuals were enrolled in the study.2. For the sake of difference conditioning regimens we divided the 21 patients into two groups: patients undergoing non-myeloablative stem cell transplantation(NST) belonged to group A, others undergoing traditional myeloablative stem cell transplantation belonged to group B; we divided them into five groups for with GVHD or without GVHD and types of GVHD: group 1(group A with acute GVHD), group 2(group A with chronic GVHD), group 3(group B with acute GVHD), group 4(group B without GVHD), group 5(group A without GVHD).3. The levels of CD28, CD80, CD152 and CD25 expressions on peripheral CD4+ T lymphocytes were detected by three colors flow cytometry (FCM)in different time(before allo-HSCT,7days,14days,21days,30days after allo-HSCT, the time of GVHD and the time after GVHD treated).4.STR-PCR for detecting micro-satellites chimeras forming. Results: 1. All 21 patients achieved engraftment. By STR-PCR assay,12 cases formed complete chimeras(CC) and 9 cases formed mixed chimeras(MC). In group A,3 cases developed acute GVHD and 4 cases developed chronic GVHD; in group B,4 cases developed aGVHD. The incidence of GVHD and infection rates between group A and B has no difference(X2=3.711, P=0.144).2. Among these 21 cases,5 cases died:2 cases died of multiple organs function failure due to primary disease relapse,1 case died of bleeding in brain and 2 cases died of liver function failure for the sake of complicated with acute GVHD; others survive with disease free till present.3. The results of multivariate logistic regression models and Kaplan-Meier survival curves analyses showed: age, sex, infection, HLA-type, blood type, conditioning regiment and the times of absolute neutrophil counts and platelets recovering to normal, had no association with the incidence of GVHD;A multivariate COX survival function model analysis showed CD4CD152 and CD4CD25 are independent prognostic factors for GVHD(X2=13.128, P<0.0001).4. Patients with GVHD demonstrated higher CD4+CD28+ and CD4+CD80+ T cell levels than those without GVHD(P<0.01);patients with aGVHD demonstrated higher than those with cGVHD(P<0.05) and without GVHD(P<0.05); Patients with GVHD demonstrated lower CD4+CD152+ and CD4+CD25+ T cell levels than those without GVHD(P<0.01); the same result occurs between aGVHD and cGVHD and without GVHD. After effective treatment, unnormal CD4+CD28+, CD4+CD80+, CD4+CD152+ and CD4+CD25+ T cell levels recovered to the levels before transplantation. Conclusions: The incidences of GVHD between NST and traditional myeloablative stem cell transplantation had no difference. B7-CD28/CD152 costimulatory pathway plays a critical role in developing of GVHD. Peripheral CD4+CD28+, CD4+CD80+, CD4+CD152+ and CD4+CD25+ T cell levels were relative to recipient GVHD, especially CD4+CD152+ and CD4+CD25+ T cell levels. Down-grade CD4+CD28+ and CD4+CD80+ T cell levels and up-grade CD4+CD152+ and CD4+CD25+T cell levels could reduce the incidence of GVHD.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2440-2440
Author(s):  
Tian Yuan ◽  
Yaling Yang ◽  
Jeffrey You ◽  
Daniel Lin ◽  
Kefeng Lin ◽  
...  

Abstract Introduction: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy accounting for 15% of pediatric and 25% of adult acute lymphoblastic leukemia (ALL) cases. With current chemotherapies and transplantation therapy, there are still 25-50% T-ALL patients that suffer from relapse and have a poor outcome. MicroRNAs (miRNAs or miRs) are endogenous small non-coding RNAs (containing about 22 nucleotides in length). miRs function at posttranscriptional level as negative regulators of gene expression and exert their regulatory function through binding to target mRNAs and silencing gene expression. To better understand the pathogenesis and develop the new therapeutic targets of T-ALL, we have developed a Pten tumor suppressor knockout T-ALL mouse model and profiled miRs from the mouse Pten deficient T-ALL. miR-26b was one of the miRs that were found down-regulated in the mouse Pten deficient T-ALL. Recent studies showed that the aberrant expression of miR-26b is implicated in several types of cancer. The expression level of miR-26b and its role of in T-ALL, however, are unknown. We investigated if the expression level of miR-26b is aberrant in T-ALL and the effect of potentially altered expression on the growth of human T-ALL cells. Methods: We conducted miR array profiling to identify differentially expressed miRs in the mouse Pten deficient T-ALLs compared with preneoplastic thymocyte controls. We validated expression levels of several miRs, including miR-26b, that are differentially expressed in mouse and human T-ALL cells using quantitative RT-PCR. We also overexpressed miR-26b using a lentivirus based vector in human T-ALL cell lines to assess its effect on cell growth and apoptosis. Results: Employing miR array profiling, we identified a subset of miRs that exhibited marked altered expression in the mouse Pten deficient T-ALL cells. Quantitative RT-PCR validated that the expression level of miR-26b in the mouse Pten deficient T-ALL cells was markedly lower in comparison to that of preneoplastic thymocytes. To determine if miR-26b expression level is also altered in human T-ALL, we performed quantitative RT-PCR on a panel of human T-ALL cell lines. Indeed, the expression level of miR-26b is significantly lower in the human T-ALL cell lines when compared with that of normal thymocytes. To functionally assess if miR-26b plays a role in the cell growth of human T-ALL cells, we expressed exogenous miR-26b in a panel of human T-ALL cell lines. We demonstrated that the expression of exogenous miR-26b significantly reduced the proliferation and promoted apoptosis of several human T-ALL cell lines. Conclusions: Our results demonstrated that miR-26b is down-regulated in T-ALL and the expression of exogenous miR-26b elicits deceased cell proliferation and increased apoptosis of human T-ALL. These results suggest that miR-26b may function as a tumor suppressor in the development of T-ALL and further characterization of the target and regulation of miR-26b may have therapeutic implications. Disclosures No relevant conflicts of interest to declare.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 8536-8536
Author(s):  
V. Guillem ◽  
M. Mata ◽  
A. Lluch ◽  
M. Gonzalez ◽  
J. Esteve ◽  
...  

8536 Background: t-AML is a syndrome occurring after exposure to chemo or radiotherapy. Since for similar treatments only some patients ends developing a secondary leukemia, it has been proposed a genetic predisposition associated to this syndrome. Methods: To analyse single nucleotide polymorphisms (SNPs) on genes that could be involved on risk of developing t-AML by means of RFLP and SNP genome screening using high density microarrays .Two groups of individuals were genotyped: Group A, composed by patients that develop t-AML after chemotherapy for breast cancer (BC) and Group B (control), formed by chemotherapy treated BC patients that after a period of more than 10 years have not developed t-AML. We have studied 12 polymorphisms on genes from drug detoxification pathways (NOQ1, GSTP1), DNA repair (XPC[3 ], XRCC1[2 ], NBS1, ERCC5 and XRCC3) and DNA synthesis (MTHFR[2 ]), in which the nucleotide change implies a change in the protein sequence (nA=16, nB=18) . Alternatively, for each patient, more than 10.000 SNPs were genotyped by means of of high density microarrays (Affymetrix) (nA=12, nB=18). The alele frequencies for each SNP between two groups were compared. Results: In RFLP study, we observe two SNPs on MTHFR gene displaying remarkably different allele frequencies between BC patients (Table). In microarray study, we found 12 SNPs with differences of allele frequency higher that 45% between A and B groups, located 6 on chromosome 8. Conclusions: The results suggest that the MHFTR gene is a candidate for being studied by its possible relation with the genetic predisposition to develop t-AML after BC treatment although its functional implication with the disease must still be elucidated. Moreover, data from SNP arrays suggest that the genome regions marked by those 12 SNPs, specially those on chromosome 8, are candidate for being studied by its possible relation with the genetic predisposition to develop t-AML after BC treatment. Financed by FIS G03/008. [Table: see text] No significant financial relationships to disclose.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 9571-9571
Author(s):  
J. M. Brell ◽  
J. Hardacre ◽  
J. Schulak ◽  
R. Onders ◽  
T. Stellato ◽  
...  

9571 Background: Decreased body mass (cachexia) is a common cause of functional decline in pancreas carcinoma (PC) and other malignancies. The etiology is unknown. Characterization of human PC skeletal muscle, in regard to proteolysis and gene expression, compared to control muscle may reveal information about pathophysiology. Methods: Biopsies of rectus abdominus muscle were performed in weight-losing PC patients all stages (A) during cancer-related surgery and in cancer-free controls undergoing ventral hernia repair (B). Caspase-3, pAkt, and urinary 3-methylhistidine (u3-MH) were assessed by Western blot and high-performance liquid chromatography. Fat-free mass (FFM), body mass index (BMI), and time to progression were recorded. Muscle from five patients (median weight loss 21%) and five controls were analyzed for gene expression patterns using Affymetrix Human Genome U133 A 2.0 array chip. Two hundred differentially over- and under-expressed genes were examined in group A for potential association with cachexia. RT-PCR confirmation of six candidate genes was performed. Results: Thirty-eight patients were enrolled. Median weight loss in group A (N=27) was 14.5% (5% - 34%). No differences were noted between groups in caspase-3 and pAkt expression. Baseline u3-MH (p=0.86) and FFM (p= 0.28) did not differ; baseline BMI was lower in group A (p=0.04). BMI follow-up measurements (N=17) were significantly decreased (p=0.0005). In 65% patients, progressive disease was noted within median time of 3 months. RT-PCR established up-regulation of CHRNA1 and LMO7, but not GDF8. mRNA down-regulation for TRIM63, IGF-BP6, and MYH-1 was confirmed. Conclusions: Muscle proteolysis in human PC skeletal muscle was not demonstrated, perhaps due to unmeasurable proteolysis or use of non-informative endpoints. BMI decreased in group A with PD; further studies need tight control of BMI variables. New hypotheses about cachexia include neuromuscular junction dysfunction, as CHRNA1 has specific role in ion channel gating; this is disrupted in the paraneoplastic Eaton-Lambert syndrome. This is first study analyzing human muscle in weight-losing PC and proves symptom management multidisciplinary research is feasible in academic setting. Supported by American Cancer Society pilot grant. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document