scholarly journals SIRT3 Is a Novel Metabolic Driver of and Therapeutic Target for Chemotherapy Resistant Dlbcls

Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 643-643
Author(s):  
Meng Li ◽  
Ying-Ling Chiang ◽  
Costas Lyssiotis ◽  
Matthew Teater ◽  
Hao Shen ◽  
...  

Abstract Understanding the molecular basis of therapy-resistant DLBCL is a critical unmet need. We explored whether the family of Sirtuin proteins might contribute to such effects. Analysis of four independent clinically annotated patient cohorts revealed that higher SIRT3 expression was linked to inferior outcome (p=4.7e-5). This was not the case for any other of the sirtuins. SIRT3 mRNA and protein expression were also much higher in DLBCL patients as compared to normal germinal center (GC) B-cells. Among the seven sirtuins, only SIRT3 depletion universally suppressed proliferation, induced cell cycle arrest, suppressed colony formation, and induced apoptosis in a large panel of DLBCL cell lines regardless of cell of origin, OxPhos status, or somatic mutation profiles. Constitutive Sirt3-/- mice manifested completely normal GC formation after T-cell dependent antigen immunization. However SIRT3 depleted human DLBCL cells manifested inferior engraftment and tumor formation in mice (p=0.023 for hairpin#1, p=0.045 for hairpin#2). Sirt3 inducible knockdown caused strong regression of established DLBCL xenografts. We examined whether SIRT3 was important in lymphoma initiation by crossing VavP-Bcl2 mice with Sirt3-/- animals. As compared to VavP-Bcl2 controls, the VavP-Bcl2/Sirt3-/- mice manifested significantly longer overall survival (P=0.0035), and greatly reduced tumor burden and systemic lymphoma infiltration of organs. SIRT3 is exclusively localized to mitochondria and hence its actions are likely metabolic. We therefore performed metabolomic profiling in SIRT 3 depleted DLBCL cell lines. This analysis revealed profound suppression of the TCA (tricarboxylic acid) cycle, with reduced TCA metabolites such as citrate, alpha-ketoglutarate, succinate, fumarate, malate, etc. SIRT3 depletion caused significant reduction in acetyl-CoA pools as measured by solid phase extraction and LC-MS, indicating that SIRT3 is required to maintain the production of key metabolic intermediates from the TCA cycle. To define the nature of the TCA defect we performed metabolic tracing studies using 13C-labeled glutamine and glucose. The results revealed that SIRT3 drives the TCA cycle through glutaminolysis. We showed that SIRT3 mediates this effect by directly deacetylating and hence hyper-activating the enzymatic activity of mitochondrial glutamine dehydrogenase (GDH). Indeed GDH overexpression could fully rescue the collapse of the TCA, cell proliferation arrest and apoptosis induced by SIRT3 depletion. SIRT3 knockdown was also rescued by feeding cells DMKG (which mimics alpha-ketoglutarate) and hence bypasses the need for SIRT3 mediated glutaminolysis. Because SIRT3 depletion caused metabolic collapse, DLBCL cells manifested potent induction of autophagy, as shown by ratios of LC3II/LC3I in DLBCL cells and using a mCherry-EGFP-LC3 reporter to measure autophagic flux. This autophagy effect was rescued by feeding cells with DMKG or by overexpressing GDH, which uncouple the TCA cycle from SIRT3 dependency. Notably the ratio of LC3II/LCI and perturbed autophagy flux was also Increased in lymphoma cells from VavP-Bcl2;sirt3-/- vs. VavP-Bcl2;sirt3+/+ mice. These data nominate SIRT3 as a putative therapeutic target. Therefore we designed a nanomolar-potency SIRT3 selective small molecule inhibitor including a mitochondrial-targeting motif that concentrates drug in the mitochondrial matrix. This compound (called YC8-02), phenocopied all the effects of SIRT3 depletion including proliferation arrest, apoptosis, TCA collapse by metabolomics study, hyperacetylation of mitochondrial proteins, suppression of GDH activity, and induction of autophagy. Yet YC8-02 had no effect on normal B-cells. Moreover, YC8-02 treatment of chemotherapy resistant DLBCL cell lines restored their sensitivity to clinically relevant doxorubicin concentrations. In summary, SIRT3 is a novel metabolic oncoprotein widely required for DLBCL cells to satisfy their metabolic needs by enhancing the activity of the TCA cycle through glutaminolysis. SIRT3 is a crucial new therapeutic vulnerability especially impactful for the most resistant DLBCLs regardless of their somatic mutations. YC8-02 and its newer derivatives are a promising and entirely new mechanism-based approach to help these patients. Disclosures Cerchietti: Leukemia and Lymphoma Society: Research Funding; Lymphoma Research Foundation: Research Funding; Weill Cornell Medicine - New York Presbyterian Hospital: Employment; Celgene: Research Funding.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3898-3898
Author(s):  
Malini Rammohan ◽  
Rahul S. Bhansali ◽  
Yi-Chien Tsai ◽  
Alexander Dong ◽  
Sebastien Malinge ◽  
...  

Abstract Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that mediates signal transduction from the extracellular surface to the nucleus. Canonically, STAT3 is phosphorylated at Tyrosine 705 (Y705) by JAK family kinases, which promotes its dimerization and subsequent localization to the nucleus. However, the role of Serine 727 (S727) phosphorylation in regulating STAT3 activity varies across cell types and remains unclear in hematopoietic tissues particularly. Several studies indicate that phosphorylation at S727 is critical for optimal STAT3 function. For example, astrogliogenesis is regulated by enhancing STAT3 activity by phosphorylation of S727 by DYRK1A. Of note, DYRK1A is overexpressed in Down syndrome-acute lymphoblastic leukemia (DS-ALL), and has previously been found to phosphorylate substrates in order to prime them for downstream phosphorylation events. Given these findings, we hypothesized that the DYRK1A phosphorylation of STAT3 at S727 is critical for promoting DS-ALL. Furthermore, certain subtypes of ALL have high rates of JAK2 activation, namely DS-ALL and Philadelphia-like ALL (Ph-like ALL); we propose that STAT3 can effectively be targeted specifically in these subtypes. In order to elucidate the role of DYRK1A phosphorylation of STAT3, we treated cytokine-deprived murine pre-B cells with EHT1610, a selective DYRK1 inhibitor, or vehicle and then pulsed the cells with JAK-STAT activating cytokines. EHT1610-treated cells had diminished S727 phosphorylation compared to vehicle, regardless of cytokine pulse; however, only vehicle-treated cells regained Y705 phosphorylation after cytokine pulse. This suggests that S727 phosphorylation is cytokine-independent and is critical for maintenance of Y705 phosphorylation. We then generated flag-tagged STAT3 S727 phospho-mimetic (S727D/E) and phospho-deficient (S727A) alleles and transduced them into pre-B cells. We observed that the degree of Y705 phosphorylation is dependent on S727, as cells expressing S727A have reduced Y705 phosphorylation compared to wild-type STAT3. Additionally, overexpression of the phospho-deficient allele conferred a significant proliferative impairment compared to the phospho-mimetic alleles. As DS-ALL and Ph-like ALL often have JAK2-activating mutations, we next aimed to determine if loss of S727 phosphorylation would decrease ALL cell growth. Indeed, two human Ph-like ALL cell lines, MHH-CALL4 and MUTZ5, displayed decreased proliferation when overexpressing the S727A mutant. These cell lines were also sensitive to treatment with C188-9, a small molecule STAT3 inhibitor that is in clinical trials for various solid tumors. Additionally, we treated primary patient ALL samples with amplification of HSA21 segments ex vivo and found that DS-ALL samples were preferentially sensitive to STAT3 inhibition compared to HD-ALL or iAMP-ALL, suggesting that STAT3 is specifically a target in JAK2-activated ALL. Our study provides new and significant insights into the regulation of STAT3 by DYRK1A, and presents a new therapeutic target for ALL cells with JAK2 activating mutations. Disclosures Bourquin: Amgen: Other: Travel Support. Crispino:Scholar Rock: Research Funding; Forma Therapeutics: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 25-26
Author(s):  
Lingzhi Li ◽  
Changying Jiang ◽  
Lucy Jayne Navsaria ◽  
Yang Liu ◽  
Angela Leeming ◽  
...  

Background: Mantle cell lymphoma (MCL) is an incurable B cell non-Hodgkin's lymphoma characterized by high refractory occurrence following drug treatment. Despite the encouraging initial MCL tumor response to ibrutinib (IBN), relapse occurs only after few months of treatment due to multiple resistance mechanisms. Thus, the novel therapeutic strategies targeting resistant mechanisms are crucial. Our group has recently shown that among the highly proliferative MCL population, a subpopulation of IBN-R cells exhibits increased OXPHOS activity that is fueled by increased glutaminolysis and rely more on mitochondrial respiration for their grow and survival. The aim of this work was to uncover potential targets responsible for the upregulation of OXPHOS pathway in the refractory/relapsed (R/R) MCL by using multiple biochemical and biological strategies. We focused the present study on glutaminase (GLS), the enzyme that converts glutamine to glutamate, a precursor of α-ketoglutarate (α-KG) that links glutamate to the TCA cycle. Incorporation of α-KG into the TCA cycle is a major anaplerotic step in proliferating cells and is critical for the maintenance of TCA cycle function. To further demonstrate the reliance of OXPHOS on glutamine anaplerosis, we have further tested the combinatory effects of targeting GLS and OXPHOS using their respective inhibitors, CB-839 and IACS-010759, on tumor killing activity in R/R MCL. Methods:Primary MCL cells from patient leukapheresis or whole blood specimens, as well as established MCL cell lines were used as experimental models of MCL. Metabolomic profiling was used to determine intracellular metabolite fluxes and levels. Cell Titer Glo assay was used to measure cell proliferation/viability after treatment with inhibitors. Annexin V and propidium iodide were used to measure cell apoptosis and cell cycle arrestviaflow cytometry analysis. Magnetic microbeads-based B-cell isolation method were used for the purification of malignant B cells from patient samples. Western blot analysis was used to evaluate protein level expression. Patient-derived Xenograft (PDX) mouse model created from patients with MCL was used to evaluate the in vivo anti-tumor activity and potential clinical value of GLS and OXPHOS inhibitors. Results:Our recent metabolomic profiling studies have demonstrated that glutaminolysis and OXPHOS are upregulated in IBN-R MCL, manifested by increased glutamine uptake in the ibrutinib-resistant MCL cell lines (p=0.03).Inhibition of glutamine metabolism with the allosteric GLS1-selective inhibitor BPTES resulted in inhibition of cell viability (0.2381uM-9.98uM), indicating that MCL cells are dependent on glutamine metabolism for their proliferation. To corroborate with the above finding, we also presented evidence that GLS1 is highly increased in IBN-R and CART-R MCL patient samples and cell lines confirmed by immunoblotting. Inhibiting of GLS would lead to significant reduction in OXPHOS, mitochondria membrane potential and ATP production, as either single drug or in combination with other targeting agents. To identify a clinical actionable GLS inhibitor for the treatment of MCL, we chose a GLS1 specific inhibitor CB-839 (Selleckchem), currently under several phase II and III clinical trials investigation on solid tumors. Inhibiting GLS1 with CB-839 leads to the decreased cell viability in MCL (0.5626nM-308.4nM). Of note, the treatment with CB-839 to MCL cell lines induces S phase reduction in both Jeko-1 (17.23%) and Z-138 (14.01%), as well as induces significant apoptosis (p=0.013 and p=0.002 in Jeko-1 and Z-138 cells). GLS inhibition will be further explored in the context of mitochondria defect or hypoxia, where OXPHOS maybe deficient. Importantly, while CB-839 is continuing its validation in several solid tumor models, this is the first study providing data on its efficacy in preclinical models of MCL. Conclusion:In conclusion, we report that glutaminolysis and OXPHOS are upregulated in IBN-R MCL that could be partially due to high expression of GLS1. Our preliminary results revealed that the new GLS inhibitor, GCB-839, may present a clinical potential for a new indication and warrants more in-depth investigation. Deciphering the mechanisms involved in MCL metabolic heterogeneity and adaptability during drug resistance development would be crucial to identify key actors enabling MCL cells to escape from therapy. Disclosures Wang: Acerta Pharma:Research Funding;Molecular Templates:Research Funding;InnoCare:Consultancy;Oncternal:Consultancy, Research Funding;Celgene:Consultancy, Other: Travel, accommodation, expenses, Research Funding;Targeted Oncology:Honoraria;MoreHealth:Consultancy;Kite Pharma:Consultancy, Other: Travel, accommodation, expenses, Research Funding;Lu Daopei Medical Group:Honoraria;OMI:Honoraria, Other: Travel, accommodation, expenses;Verastem:Research Funding;Nobel Insights:Consultancy;BioInvent:Research Funding;Guidepoint Global:Consultancy;AstraZeneca:Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding;Pharmacyclics:Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding;Janssen:Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding;Juno:Consultancy, Research Funding;Dava Oncology:Honoraria;Loxo Oncology:Consultancy, Research Funding;Pulse Biosciences:Consultancy;OncLive:Honoraria;Beijing Medical Award Foundation:Honoraria;VelosBio:Research Funding.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Dylan Gerard Ryan ◽  
Ming Yang ◽  
Hiran A Prag ◽  
Giovanny Rodriguez Blanco ◽  
Efterpi Nikitopoulou ◽  
...  

The Tricarboxylic Acid Cycle (TCA) cycle is arguably the most critical metabolic cycle in physiology and exists as an essential interface coordinating cellular metabolism, bioenergetics, and redox homeostasis. Despite decades of research, a comprehensive investigation into the consequences of TCA cycle dysfunction remains elusive. Here, we targeted two TCA cycle enzymes, fumarate hydratase (FH) and succinate dehydrogenase (SDH), and combined metabolomics, transcriptomics, and proteomics analyses to fully appraise the consequences of TCA cycle inhibition (TCAi) in murine kidney epithelial cells. Our comparative approach shows that TCAi elicits a convergent rewiring of redox and amino acid metabolism dependent on the activation of ATF4 and the integrated stress response (ISR). Furthermore, we also uncover a divergent metabolic response, whereby acute FHi, but not SDHi, can maintain asparagine levels via reductive carboxylation and maintenance of cytosolic aspartate synthesis. Our work highlights an important interplay between the TCA cycle, redox biology and amino acid homeostasis.


2005 ◽  
Vol 187 (9) ◽  
pp. 2967-2973 ◽  
Author(s):  
Cuong Vuong ◽  
Joshua B. Kidder ◽  
Erik R. Jacobson ◽  
Michael Otto ◽  
Richard A. Proctor ◽  
...  

ABSTRACT Staphylococcal polysaccharide intercellular adhesin (PIA) is important for the development of a mature biofilm. PIA production is increased during growth in a nutrient-replete or iron-limited medium and under conditions of low oxygen availability. Additionally, stress-inducing stimuli such as heat, ethanol, and high concentrations of salt increase the production of PIA. These same environmental conditions are known to repress tricarboxylic acid (TCA) cycle activity, leading us to hypothesize that altering TCA cycle activity would affect PIA production. Culturing Staphylococcus epidermidis with a low concentration of the TCA cycle inhibitor fluorocitrate dramatically increased PIA production without impairing glucose catabolism, the growth rate, or the growth yields. These data lead us to speculate that one mechanism by which staphylococci perceive external environmental change is through alterations in TCA cycle activity leading to changes in the intracellular levels of biosynthetic intermediates, ATP, or the redox status of the cell. These changes in the metabolic status of the bacteria result in the attenuation or augmentation of PIA production.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Liying Ruan ◽  
Lu Li ◽  
Dian Zou ◽  
Cong Jiang ◽  
Zhiyou Wen ◽  
...  

Abstract Background S-Adenosylmethionine (SAM) is a critical cofactor involved in many biochemical reactions. However, the low fermentation titer of SAM in methionine-free medium hampers commercial-scale production. The SAM synthesis pathway is specially related to the tricarboxylic acid (TCA) cycle in Bacillus amyloliquefaciens. Therefore, the SAM synthesis pathway was engineered and coupled with the TCA cycle in B. amyloliquefaciens to improve SAM production in methionine-free medium. Results Four genes were found to significantly affect SAM production, including SAM2 from Saccharomyces cerevisiae, metA and metB from Escherichia coli, and native mccA. These four genes were combined to engineer the SAM pathway, resulting in a 1.42-fold increase in SAM titer using recombinant strain HSAM1. The engineered SAM pathway was subsequently coupled with the TCA cycle through deletion of succinyl-CoA synthetase gene sucC, and the resulted HSAM2 mutant produced a maximum SAM titer of 107.47 mg/L, representing a 0.59-fold increase over HSAM1. Expression of SAM2 in this strain via a recombinant plasmid resulted in strain HSAM3 that produced 648.99 mg/L SAM following semi-continuous flask batch fermentation, a much higher yield than previously reported for methionine-free medium. Conclusions This study reports an efficient strategy for improving SAM production that can also be applied for generation of SAM cofactors supporting group transfer reactions, which could benefit metabolic engineering, chemical biology and synthetic biology.


1968 ◽  
Vol 46 (4) ◽  
pp. 453-460 ◽  
Author(s):  
D. Mitchell ◽  
Michael Shaw

Mycelium of the flax rust fungus (Melampsora lini (Pers.) Lév.), grown on flax cotyledons in tissue culture, had a mean [Formula: see text]of 4.1 and a mean C6/C1 ratio of 0.14, measured after 4 hours in radioactive glucose. The C6/C1 ratio increased with time and also after treatment with 10−5 M 2,4-dinitrophenol. The relative labelling of the (80%) ethanol-soluble carbohydrates, and organic and amino acid fractions after incubation with glucose-1-, -2-, or -6-14C also indicated preferential release of C1 as 14CO2. Trehalose (unknown A) was tentatively identified in the carbohydrate fraction and was mildly radioactive after incubation of the mycelium with labelled glucose for 3 hours. The principal radioactive products of glucose in this fraction were two unknowns, B and C, which were tentatively identified as mannitol and arabitol. The labelling patterns were consistent with their formation from intermediates of the pentose phosphate pathway. The distribution of radioactivity derived from glucose in alanine, glutamate, and aspartate also indicated that hexose or triose units formed in the pentose phosphate pathway were converted to pyruvate, which either gave rise to alanine or was further oxidized in the tricarboxylic acid cycle. Incubation with pyruvate-1-, -2-, or -3-14C for 3 hours gave rise to 14CO2 and labelled alanine, glutamate, and aspartate in a manner consistent with the operation of the TCA cycle. Mannitol-1-6-14C was not metabolized to any appreciable extent in this period, but did give rise to 14CO2 and to several unidentified compounds in the carbohydrate fraction.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2917-2917
Author(s):  
Jennifer Li ◽  
Andrew Leu ◽  
Mingjie Li ◽  
Ethan D Hobel ◽  
Kevin Delijani ◽  
...  

Abstract Abstract 2917 The inhibitory Fc receptor, Fc γRIIb, is expressed on plasma cells, controls their persistence in the bone marrow (BM) and their ability to produce serum Ig. Activation of Fc γRIIb leads to the phosphorylation of ITIM and recruitment of SH2-containing inositol 5'-phosphatase (SHIP) in plasma cells. Immunoreceptor tyrosine-based activation motif (ITAM) and ITIM provide the basis for two opposing signaling modules that duel for control of plasma cell activation. Fc γRIIb-mediated SHIP phosphorylation activates downstream ITAM or ITIM signaling. To determine whether multiple myeloma (MM) cells express Fc γRIIb, we performed immunohistochemical staining on bone marrow mononuclear cells from MM patients and controls. We found that not only CD20+ B cells expressed Fc γRIIb but more importantly CD138+ cells from MM patients also showed expression of this receptor. Next, we examined whether Fc γRIIb was present and expressed in CD138+ primary MM cells purified from fresh MM BM and the MM cell lines MM1s, RPMI8226, and U266 using PCR and RT-PCR on DNA and mRNA, respectively. We focused on the transmembrane domain of the Fc γRIIb gene with four primers from different parts of this domain since this portion plays a critical role in this receptor's function. The MM cell lines expressed different amounts of Fc γRIIb. Notably, we found that 17% (5/30) of MM patients showed absence of Fc γRIIb both using RT-PCR for mRNA and PCR for DNA. Moreover, use of these same primers on nonmalignant PBMCs from the MM patients also showed absence of this gene in the same five patients. As a result of these findings, we are currently sequencing Fc γRIIb in MM patients to determine if additional patients show mutational changes that affect the function of this receptor. We also further determined SHIP-1 phosphorylation using Western blot analysis since this protein mediates downstream signaling of Fc γRIIb. Following stimulation with Fc complexes, phosphorylation of SHIP-1 was markedly reduced in MM tumor cells compared to normal CD20+ B cells. Interestingly, the patients with missing Fc γRIIb expressed higher levels of SHIP-1 gene expression compared to patients with normal Fc γRIIb expression. We investigated the IgG-binding ability of MM patients (n=33) and normal donors (n=33) to Fc γRIIb. Each serum sample was incubated with cells from MHC1, a cell line that specifically expresses Fc γRIIb but not Fc γRI and Fc γRIIa. The results showed MM patients' serum IgG have much lower Fc γRIIb-binding ability than normal human IgG (P<0.05) by using both flow cytometric and immunofluorescence assays. Our findings suggest that the monoclonal protein produced by MM patients has a very low Fc γRIIb-binding ability and is incapable of signaling through the inhibitory ITIM pathway. Germline loss of Fc γRIIb in MM patients with variation in its expression level and its downstream signaling molecule SHIP and its phosphorylation as well as the inability of MM IgG to bind cells containing this receptor is a potential new mechanism that contributes to the uncontrolled growth of MM. Disclosures: Berenson: Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau; Millennium Pharmaceuticals, Inc.: Consultancy, Honoraria, Research Funding, Speakers Bureau; Onyx Pharmaceuticals: Consultancy, Honoraria, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau; Medtronic: Consultancy, Honoraria, Research Funding, Speakers Bureau; Merck: Research Funding; Genentech: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1569-1569
Author(s):  
Isabel Ben Batalla ◽  
Robert Erdmann ◽  
Heather Jørgensen ◽  
Rebecca Mitchell ◽  
Thomas Ernst ◽  
...  

Abstract Resistance and CML stem cell persistence preclude cure for the majority of patients treated with tyrosine kinase inhibitor (TKI) therapies. We demonstrated that the receptor tyrosine kinase (RTK) Axl of the Tyro-3, Axl, Mer (TAM) family is expressed by TKI-sensitive and -resistant CML cells (Erdmann R. et al. ASH 2013 and 2014). We have shown that blockade of the Gas6-Axl axis by the small molecule Axl inhibitor BGB324 (BerGenBio) represents a therapeutic target in AML. We are currently investigating BGB324 in a Phase 1b trial in refractory AML patients and in those non-eligible for intensive chemotherapy (BGBC003, NCT02488408). We hypothesised that Axl represents a tractable therapeutic target even in the most resistant forms of CML. Upon treatment with imatinib KCL-22 and K562 cells showed upregulation of Axl at the protein level indicating that Axl might be involved in resistance towards TKIs in CML. Consistently, Axl levels were higher in MNCs of TKI-resistant patients compared to -sensitive patients after 6 months of treatment (n=17/20, 1±0.4 vs. 0.16±0.03; *p<0.05). Upon combined treatment of KCL-22 and K562 cells with BGB324 and imatinib we detected an additive effect of growth inhibition (KCL-22 cells; n=3, viability 66.0±0.5% BGB324, 52.0±1.1% imatinib, 42.3±1.5% combo; combo vs. IM *p<0.01 and combo vs. BGB324 *(p<0.0001), and not shown). Analysis of intracellular signal transduction in these cell lines indicated that Axl induces phosphorylation of Stat5 by BCR-ABL independent pathways because we detected an additive effect of inhibition of Stat5 phosphorylation when combining imatinib and BGB324. We could not detect an additive inhibitory effect on phosphorylation of Erk and Akt. Consistently, combined BCR-ABL and Axl blockade by means of imatinib and shRNA respectively, demonstrated an additive effect in reducing cell viability in KCL-22 and K562 cells (KCL-22 cells; n=3, viability 84.5±0.8% shControl+imatinib, 74.5±2.6% shAxl, 50.4±0.9% shAxl+imatinib; shAxl+IM vs. IM *(p<0.0001) and vs. shAxl *(p<0.001) and not shown). We next investigated Axl activation in TKI insensitive BCR-ABL+ cell lines. In addition we tested a novel Ponatinib-resistant cell line KCL-22 PonR generated by subcloning parental KCL-22 in increasing concentrations of ponatinib. BCR-ABL is unmutated in these cells; oncoprotein kinase activity is switched off but cell death is not induced with 2mM ponatinib. We found that Axl phosphorylation was higher in the TKI-resistant cell lines BaF3/T315I, KCL-22 T315I and KCL-22 PonR when compared to the parental cell lines (n=3, 139±3.8% KCL-22 T315I, 214±1.3% KCL-22 PonR with respect to KCL-22 WT, *p<0.001 for both comparisons; 169±8.7% with respect to BaF3/p210, *p<0.005). Treatment with BGB324 inhibited cell proliferation with an IC50of 726, 3178 and 2720nM for BaF3/T315I, KCL-22 T315I and KCL-22 PonR, respectively. BGB324 could induce apoptosis and reduce proliferation in these cell lines. Furthermore, BGB324 blocked growth of colonies and induced apoptosis of T315I-mutated and pan-TKI-resistant (including ponatinib) primary CML MNCs. The finding that BGB324 inhibits TKI-resistant CML was further corroborated with KCL-22 T315I mutated and KCL-22 PonR xenograft models. In both models we observed a significant tumor growth reduction upon treatment with 25 mg/kg BGB324 twice daily compared to placebo leading to a 34% and 58% reduction in tumor volume, p=0.0044, p=0.0021 for KCL-22 T315I and KCL-22 PonR, respectively). Cell proliferation was quantified by pHH3 analysis indicating a significant reduction in KCL-22 T315I and KCL-22 PonR tumors (n=8, 242.8±10.9 vs. 182.2±8.1, *p<0.0001; n=9, 259.5±9.3 vs. 213.2±6.8; *p<0.0001, respectively). Furthermore, we observed a significant decrease of Axl, Erk and Stat5 phosphorylation after treatment with BGB324 for 8 days. We also investigated the therapeutic effect of BGB324 in a systemic model, by transplantation of KCL-22 PonR into sublethally irradiated NSG mice. In this model, treatment with 25 mg/kg BGB324 twice daily resulted in significant prolongation of overall survival (median OS 36 days (control) vs 43 days (BGB324), n=5 *p<0.05). In summary, our data highlight the advantage to be gained from inhibition of Axl even in the most resistant CML cells, and support the need for human clinical trials of the novel inhibitor BGB324 alone and in combination with TKIs. Disclosures Schafhausen: Novartis: Consultancy, Honoraria; ARIAD: Consultancy, Honoraria; BMS: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria. Hochhaus:Pfizer: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding; ARIAD: Honoraria, Research Funding. Holyoake:Novartis: Research Funding; BMS: Research Funding. Loges:BerGenBio: Honoraria, Other: travel support, Research Funding.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Hiroko Iijima ◽  
Atsuko Watanabe ◽  
Junko Takanobu ◽  
Masami Yokota Hirai ◽  
Takashi Osanai

The tricarboxylic acid (TCA) cycle and pyruvate metabolism of cyanobacteria are unique and important from the perspectives of biology and biotechnology research. Rre37, a response regulator induced by nitrogen depletion, activates gene expression related to sugar catabolism. Our previous microarray analysis has suggested that Rre37 controls the transcription of genes involved in sugar catabolism, pyruvate metabolism, and the TCA cycle. In this study, quantitative real-time PCR was used to measure the transcript levels of 12 TCA cycle genes and 13 pyruvate metabolism genes. The transcripts of 6 genes (acnB,icd,ppc,pyk1,me, andpta) increased after 4 h of nitrogen depletion in the wild-type GT strain but the induction was abolished byrre37overexpression. The repression of gene expression offumC, ddh, andackAcaused by nitrogen depletion was abolished byrre37overexpression. The expression ofmewas differently affected byrre37overexpression, compared to the other 24 genes. These results indicate that Rre37 differently controls the genes of the TCA cycle and pyruvate metabolism, implying the key reaction of the primary in this unicellular cyanobacterium.


Author(s):  
Inseok Choi ◽  
Hyewon Son ◽  
Jea-Hyun Baek

Tricarboxylic acid cycle (TCA) is a series of chemical reactions in aerobic organisms used to generate energy via the oxidation of acetyl-CoA derived from carbohydrates, fatty acids, and proteins. In the eukaryotic system, the TCA cycle completely occurs in mitochondria, while the intermediates of the TCA cycle are retained in mitochondria due to their polarity and hydrophilicity. Under conditions of cell stress, mitochondria become disrupted and release their contents, which act as danger signals in the cytosol. Of note, the TCA cycle intermediates may also leak from dysfunctioning mitochondria and regulate cellular processes. Increasing evidence shows that the metabolites of the TCA cycle are substantially involved in the regulation of immune responses. In this review, we aimed to provide a comprehensive systematic overview of the molecular mechanisms of each TCA cycle intermediate that may play key roles in regulating cellular immunity in cell stress and discuss their implications for immune activation and suppression.


Sign in / Sign up

Export Citation Format

Share Document