scholarly journals The effects of cellulose nanofibers compounded in water-based undercoat paint on the discoloration and deterioration of painted wood products

2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Tomoko Shimokawa ◽  
Yukako Hishikawa ◽  
Eiji Togawa ◽  
Hajime Shibuya ◽  
Masahiko Kobayashi ◽  
...  

AbstractCellulose nanofibers (CNFs) have many potentials as filler to improve the properties of the other materials. We have developed the novel paints containing CNFs, and which controlled the discoloration of wood products. To clarify the discoloration mechanism of wood panels using an undercoat paint containing CNFs, prepared by an integrated process from Cryptomeria japonica, the composites and films made of CNFs and acryl resin that was a raw material for the paints were prepared. Observation of the surface of the CNFs/acryl resin composite film by atomic force microscopy showed that the fibers and the resin were uniformly mixed. The composite film prevented light transmittance in the ultraviolet (UV) light region, as well as oxygen gas permeation. The permeability coefficient of the oxygen gas decreased to 60% with the addition of 1.5 wt% of CNFs to the acryl resin. The addition of CNFs also increased the breaking stress by approximately 1.5 times compared with the acryl resin film. Electron spin resonance (ESR) analysis after UV irradiation resulted in the lowest radical formation of a piece of wood wrapped in the CNFs/acryl resin composite compared with the acryl-coated specimen and the wood as it was. Therefore, the CNFs composite film shielded the UV rays and oxygen more effectively than the original acryl resin, making it difficult for these factors to reach the wood’s surface, and thus, perhaps suppressing the generation of radicals from the wood. These actions would suppress the production of coloring substances caused by the radicals, resulting in the suppression of discoloration. Furthermore, the increase in the film’s strength by the addition of CNFs would have enhanced the stability of overall the paints with a CNF-containing undercoat. These effects might have contributed not only to the prevention of discoloration but also to the prevention of the occurrence of minute cracks caused by various weather deterioration factors.

2020 ◽  
Vol 90 (5-6) ◽  
pp. 439-447 ◽  
Author(s):  
Andrew Hadinata Lie ◽  
Maria V Chandra-Hioe ◽  
Jayashree Arcot

Abstract. The stability of B12 vitamers is affected by interaction with other water-soluble vitamins, UV light, heat, and pH. This study compared the degradation losses in cyanocobalamin, hydroxocobalamin and methylcobalamin due to the physicochemical exposure before and after the addition of sorbitol. The degradation losses of cyanocobalamin in the presence of increasing concentrations of thiamin and niacin ranged between 6%-13% and added sorbitol significantly prevented the loss of cyanocobalamin (p<0.05). Hydroxocobalamin and methylcobalamin exhibited degradation losses ranging from 24%–26% and 48%–76%, respectively; added sorbitol significantly minimised the loss to 10% and 20%, respectively (p < 0.05). Methylcobalamin was the most susceptible to degradation when co-existing with ascorbic acid, followed by hydroxocobalamin and cyanocobalamin. The presence of ascorbic acid caused the greatest degradation loss in methylcobalamin (70%-76%), which was minimised to 16% with added sorbitol (p < 0.05). Heat exposure (100 °C, 60 minutes) caused a greater loss of cyanocobalamin (38%) than UV exposure (4%). However, degradation losses in hydroxocobalamin and methylcobalamin due to UV and heat exposures were comparable (>30%). At pH 3, methylcobalamin was the most unstable showing 79% degradation loss, which was down to 12% after sorbitol was added (p < 0.05). The losses of cyanocobalamin at pH 3 and pH 9 (~15%) were prevented by adding sorbitol. Addition of sorbitol to hydroxocobalamin at pH 3 and pH 9 reduced the loss by only 6%. The results showed that cyanocobalamin was the most stable, followed by hydroxocobalamin and methylcobalamin. Added sorbitol was sufficient to significantly enhance the stability of cobalamins against degradative agents and conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sean Swetledge ◽  
Renee Carter ◽  
Rhett Stout ◽  
Carlos E. Astete ◽  
Jangwook P. Jung ◽  
...  

AbstractPolymeric nanoparticles have been investigated as potential delivery systems for therapeutic compounds to address many ailments including eye disease. The stability and spatiotemporal distribution of polymeric nanoparticles in the eye are important regarding the practical applicability and efficacy of the delivery system in treating eye disease. We selected poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with lutein, a carotenoid antioxidant associated with eye health, as our model ophthalmic nanodelivery system and evaluated its stability when suspended in various conditions involving temperature and light exposure. We also assessed the ocular biodistribution of the fluorescently labeled nanoparticle vehicle when administered topically. Lutein-loaded nanoparticles were stable in suspension when stored at 4 °C with only 26% lutein release and no significant lutein decay or changes in nanoparticle morphology. When stored at 25 °C and 37 °C, these NPs showed signs of bulk degradation, had significant lutein decay compared to 4 °C, and released over 40% lutein after 5 weeks in suspension. Lutein-loaded nanoparticles were also more resistant to photodegradation compared to free lutein when exposed to ultraviolet (UV) light, decaying approximately 5 times slower. When applied topically in vivo, Cy5-labled nanoparticles showed high uptake in exterior eye tissues including the cornea, episcleral tissue, and sclera. The choroid was the only inner eye tissue that was significantly higher than the control group. Decreased fluorescence in all exterior eye tissues and the choroid at 1 h compared to 30 min indicated rapid elimination of nanoparticles from the eye.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 53
Author(s):  
Sicong Chen ◽  
Xunfan Wei ◽  
Zhuoxiao Sui ◽  
Mengyuan Guo ◽  
Jin Geng ◽  
...  

Among different insects, the American cockroach (Periplaneta americana) has been bred in industrial scale successfully as a potential resource of protein, lipid, and antibacterial peptide. However, the application of its chitosan has not been studied widely, which has hindered the sufficient utilization of P. americana. In this paper, the chitosan from P. americana was separated, characterized, and processed into film (PaCSF) to examine its potential of being applied in food packaging. As the results of different characterizations showed, PaCSF was similar to shrimp chitosan film (SCSF). However, concerning the performances relating to food packaging, the two chitosan films were different. PaCSF contained more water (42.82%) than SCSF did, resulting in its larger thickness (0.08 mm). PaCSF could resist UV light more effectively than SCSF did. Concerning antioxidant activity, the DPPH radical scavenging ability of PaCSF increased linearly with time passing, reaching 72.46% after 8 h, which was better than that of SCSF. The antibacterial activity assay exhibited that PaCSF resisted the growth of Serratia marcescens and Escherichia coli more effectively than SCSF did. The results implied that P. americana chitosan could be a potential raw material for food packaging, providing a new way to develop P. americana.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 329
Author(s):  
Tan Yi ◽  
Minghui Qi ◽  
Qi Mo ◽  
Lijie Huang ◽  
Hanyu Zhao ◽  
...  

Composite films of polybutylene adipate terephthalate (PBAT) were prepared by adding thermoplastic starch (TPS) (TPS/PBAT) and nano-zinc oxide (nano-ZnO) (TPS/PBAT/nano-ZnO). The changes of surface morphology, thermal properties, crystal types and functional groups of starch during plasticization were analyzed by scanning electron microscopy, synchronous thermal analysis, X-ray diffraction, infrared spectrometry, mechanical property tests, and contact Angle and transmittance tests. The relationship between the addition of TPS and the tensile strength, transmittance, contact angle, water absorption, and water vapor barrier of the composite film, and the influence of nano-ZnO on the mechanical properties and contact angle of the 10% TPS/PBAT composite film. Experimental results show that, after plasticizing, the crystalline form of starch changed from A-type to V-type, the functional group changed and the lipophilicity increased; the increase of TPS content, the light transmittance and mechanical properties of the composite membrane decreased, while the water vapor transmittance and water absorption increased. The mechanical properties of the composite can be significantly improved by adding nano-ZnO at a lower concentration (optimum content is 1 wt%).


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yu Zheng ◽  
Xudong Luo ◽  
Jinlong Yang ◽  
Wenlong Huo ◽  
Chi Kang

A novel approach is used for fabricating steel slag foam ceramics based on the particle-stabilized foaming method. In this work, steel slag was used as the raw material and propyl gallate (PG) was used as the surface modifier. For the first time, steel slag ceramic foams were successfully fabricated based on particle-stabilized foams. The results show that the stability of the ceramic foams was closely related to the pH value and PG concentration. The porosity and compressive strength could be controlled by changing the solid loading of steel slag and sintering temperature. The porosity of steel slag foam ceramics ranged from 85.6% to 62.53%, and the compressive strength was from 1.74 MPa to 10.42 MPa. The thermal conductivity of steel slag foam ceramics was only 0.067 W (m·K)−1, which shows that it could be used as a thermal insulation material.


2019 ◽  
Vol 31 (9-10) ◽  
pp. 1101-1111 ◽  
Author(s):  
Yunhua Lu ◽  
Jican Hao ◽  
Guoyong Xiao ◽  
Lin Li ◽  
Zhizhi Hu ◽  
...  

The diamine, 9,9-bis[4-(4-amino-3-hydroxylphenoxy)phenyl]fluorene (BAHPPF) was synthesized by the modified two-step method. Then, a series of acetate-containing copoly(ether-imide)s were prepared by the copolymerization of BAHPPF, 9,9-bis(4-aminophenyl)fluorene (BAF) and 2,2′-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) followed by chemical imidization. The structures and properties of the BAHPPF and copoly(ether-imide)s were characterized by nuclear magnetic resonance spectrometer (NMR), Fourier transform infrared spectrometer (FTIR), X-ray diffractometer (XRD), differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), ultraviolet-visible spectrophotometer (UV-VIS), and tensile testing. Single gas permeation performances of these copoly(ether-imide)s were also studied for five representative gases of interest including H2, O2, N2, CO2, and CH4. The experimental results showed that the copoly(ether-imide)s showed excellent optical properties with high light transmittance above 80.2% at 450 nm. The glass transition temperature of these copolymers were higher than 333°C. Their tensile strength and Young’s module also increased, and the elongation decreased with the decrease of BAHPPF. High gas permeabilities of copoly(ether-imide)s were obtained, and the ideal selectivity of CO2/CH4 was improved due to the introduction of acetate group and flexible ether linkage. These copoly(ether-imide)s could be applied to the field of optics and gas separation.


2006 ◽  
Vol 11-12 ◽  
pp. 351-354
Author(s):  
Jie Wei ◽  
Xiao Mei Ji ◽  
Xiao Wang ◽  
Xiao Ming Dong

In order to analyze the polarization of Poly(vinyl alcohol) (PVA) film, both the polarizing film and polarizing film exposed to UV light were prepared and investigated by X-ray diffractometer (XRD) and polarized UV-Visible Spectrometer. Through a series of experiments, it was found that the crystallization degree of the unirradiated PVA film was higher than that of the UV-irradiated PVA film. Furthermore, the transmittance of both unirradiated PVA film and UV-irradiated PVA film was selective, different wavelength and different polarizing angles parallelism different light transmittance.


2012 ◽  
Vol 454 ◽  
pp. 324-328
Author(s):  
Yan He ◽  
Ya Jing Liu ◽  
Yong Lin Cao ◽  
Li Xia Zhou

Infra-red absorption spectrometry, X-ray diffraction observations and characterization tests based on silicon molybdenum colorimetric method were used to investigate the optimal pH value controlling the stability of the silicic acid form. The experiment process was done by using sodium silicate as raw material. The results showed that the solution of silicate influenced the polymerization. The active silicic acid solution with a certain degree of polymerization was obtained by controlling the pH values.


Author(s):  
А.О. ЕВСЮКОВА

Согласно данным проекта Стратегии развития физической культуры и спорта в Российской Федерации до 2030 года, в 2008–2019 гг. численность систематически занимающегося физической культурой и спортом населения выросла в 2,5 раза. Это обусловливает необходимость создания инновационных продуктов для людей занимающихся спортом. Для определения перспектив создания продуктов специального назначения, в частности функциональных напитков для спортивного питания, проведен анализ патентов в этой области. Объектом анализа были 59 патентов, опубликованных с 1995 г. по май 2020 г. и занесенных в отечественную – ФИПС и международные – EAPATIS, USPTO, EPO, CISPATANT базы данных. Проанализированы следующие подклассы изобретений по актуализированной версии МПК: A23C, A23D, A23F, A23G, A23J, A23K, A23L, A61K, A61P, C12G. Результаты исследований представлены на рисунках в виде диаграмм. Установлено, что производство функциональных напитков для спортивного питания активно развивается. Российская Федерация имеет преимущество по количеству зарегистрированных патентов в этой области, но по объему производства продукции уступает зарубежным странам. Поскольку продукция агропромышленного комплекса России вполне удовлетворяет требованиям потребителей к натуральности сырьевого состава продукта, для обеспечения стабильности внутреннего рынка перспективно развитие отечественного производства функциональных напитков для спортивного питания. According to the draft strategy for the development of physical culture and sports in the Russian Federation until 2030, in 2008–2019, the number of people systematically engaged in physical culture and sports increased by 2,5 times. This makes it necessary to create innovative products for people involved in sports. To determine the prospects for creating special-purpose products, in particular functional beverages for sports nutrition, an analysis of patents in this area was conducted. 59 patents published from 1995 to may 2020 and included in the national – FIPS and international – EAPATIS, USPTO, EPO, CISPATANT databases were the object of analysis. Subclasses of inventions according to the updated version of the IPC A23C, A23D, A23F, A23G, A23J, A23K, A23L, A61K, A61P and C12G are analyzed. The results of the research are presented in figures in the form of diagrams. It is established that the production of functional beverages for sports nutrition is actively developing. The Russian Federation has an advantage in the number of registered patents in this area, but in terms of production volume it is inferior to foreign countries. Since the products of the Russian agro-industrial complex fully meet the requirements of consumers for the naturalness of the raw material composition of the product, the development of domestic production of functional beverages for sports nutrition is promising to ensure the stability of the domestic market.


Sign in / Sign up

Export Citation Format

Share Document