scholarly journals lncRNA H19 promotes matrix mineralization through up-regulating IGF1 by sponging miR-185-5p in osteoblasts

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Yuan Wu ◽  
Yu Jiang ◽  
Qiang Liu ◽  
Cui-Zhong Liu

Abstract Background Matrix mineralization is a key stage in bone formation involving in many bone-specific genes and signaling pathways. Emerging evidence indicate that long non-coding RNA (lncRNA) and microRNAs (miRNAs) play crucial roles in regulating the mineralization process of osteoblasts. This study aims to characterize the function and mechanism of lncRNA H19/miR-185-5p/IGF1 axis in modulating matrix mineralization of osteoblasts. Results H19 and IGF1 were highly expressed while miR-185-5p was lowly expressed in mineralized cells. Knocking down H19 inhibited matrix mineralization of osteoblasts, yet miR-185-5p had opposite effects. Moreover, H19 directly targeted miR-185-5p, whereas miR-185-5p repressed IGF1 expression. Meanwhile, miR-185-5p inhibition compensated the suppression of the matrix mineralization in osteoblasts by H19 knockdown. Conclusions The findings of this study showed that lncRNA H19 was upregulated in mineralized osteoblasts and promoted matrix mineralization through miR-185-5p/IGF1 axis in osteoblasts for the first time. This study may provide a new perspective for the diagnosis and treatment of diseases related to bone metabolism.

2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Bin Yang ◽  
Xiaodi Tang ◽  
Zhixin Wang ◽  
Daju Sun ◽  
Xin Wei ◽  
...  

Previous studies have demonstrated that taurine-upregulated gene 1 (TUG1) was aberrantly expressed and involved in multiple types of cancer; however, the expression profile and potential role of TUG1 in prostate cancer (PCa) remains unclear. The aim of the present study was to evaluate the expression and function of TUG1 in PCa. In the present study, we analyzed TUG1 expression levels of PCa patients in tumor and adjacent normal tissue by real-time quantitative PCR. Knockdown of TUG1 by RNAi was performed to explore its roles in cell proliferation, migration, and invasion. Here we report, for the first time, that TUG1 promotes tumor cell migration, invasion, and proliferation in PCa by working in key aspects of biological behaviors. TUG1 could negatively regulate the expression of miR-26a in PCa cells. The bioinformatics prediction revealed putative miR-26a-binding sites within TUG1 transcripts. In conclusion, our study suggests that long non-coding RNA (lncRNA) TUG1 acts as a functional oncogene in PCa development.


2017 ◽  
Author(s):  
WenChong Sun ◽  
Ling Pei ◽  
Zuodi Liang

AbstractBackgroundSepsis-associated encephalopathy (SAE) is related to cognitive sequelae in patients in the intensive care unit (ICU) and can have serious impacts on quality of life after recovery. Although various pathogenic pathways are involved in SAE development, little is known concerning the global role of long non-coding RNAs (lncRNAs) in SAE.MethodsHerein, we employed transcriptome sequencing approaches to characterize the effects of lipopolysaccharide (LPS) on lncRNA expression patterns in brain tissue isolated from Sprague-Dawley (SD) rats with and without SAE. We performed high-throughput transcriptome sequencing after LPS was intraperitoneally injected and predicted targets and functions using bioinformatics tools. Subsequently, we explored the results in detail according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses.ResultsLncRNAs were differentially expressed in brain tissue after LPS treatment. After 6 h of LPS exposure, expression of 400 lncRNAs were significantly changed, including an increase in 316 lncRNAs and a decrease in 84 lncRNAs. In addition, 155 mRNAs were differentially expressed, with 84 up-regulated and 71 down-regulated. At 24 h post-treatment, expression of 117 lncRNAs and 57 mRNAs was consistently elevated, while expression of 79 lncRNAs and 21 mRNAs was decreased (change > 1.5-fold; p < 0.05). We demonstrated for the first time that differentially expressed lncRNAs were predicted to be enriched in a post-chaperonin tubulin folding pathway (GO : 007023), which is closely related to the key step in the tubulin folding process.Interestingly, the predicted pathway (KEGG 04360: axon guidance) was significantly changed under the same conditions. These results reveal that LPS might influence the construction and polarization of microtubules, which exert predominant roles in synaptogenesis and related biofunctions in the rodent central nervous system (CNS).ConclusionsAn inventory of LPS-modulated expression profiles from the rodent CNS is an important step toward understanding the function of mRNAs, including lncRNAs, and suggests that microtubule malformation and dysfunction may be involved in SAE pathogenesis.


Author(s):  
Xubin Ren ◽  
Nie Xu ◽  
Yunting Zhang ◽  
Tao Wang

Increasing evidence demonstrates that long non-coding RNAs (lncRNAs) play important regulatory roles in mediating initiation and progression of lung adenocarcinoma (LA), which is one of the most lethal in humans. A previous study reported that lncRNAZXF1 was dysregulated in LA and enhanced expression of ZXF1 promoted the invasion and metastasis in LA. However, the effect of ZXF1 on LA progression and its underlying mechanisms were not thoroughly investigated. In our in vitro experiments, qRT-PCR revealed that the expression level of ZXF1 in LA tissues and tumor cells were significantly higher than that in adjacent normal tissues and normal cells. Furthermore, bioinformatics analysis, luciferase reporter assay, western blot and RNA immunoprecipitation (RIP) assay showed that ZXF1 could directly interact with miR-634, which targets GRB2. Therefore, we propose that ZXF1 could function as an oncogene partly by sponging miR-634 and therefore regulating GRB2 expression in LA. Overall, this study demonstrated, for the first time, that the lncRNA ZXF1/miR-634/GRB2 axis plays crucial roles in modulating LA progression. Moreover, lncRNA ZXF1 might potentially improve LA prognosis and serve as a therapeutic target for the treatment of LA.


2022 ◽  
Vol 11 ◽  
Author(s):  
Lin Yao ◽  
Chang-Feng Man ◽  
Rong He ◽  
Lian He ◽  
Jia-Bin Huang ◽  
...  

N6-methyladenosine (m6A) is the most common epigenetic modification of eukaryotic RNA, which can participate in the growth and development of the body and a variety of physiological and disease processes by affecting the splicing, processing, localization, transport, translation, and degradation of RNA. Increasing evidence shows that non-coding RNAs, particularly microRNA, long non-coding RNA, and circular RNA, can also regulate the RNA m6A modification process by affecting the expression of m6A-related enzymes. The interaction between m6A modification and non-coding RNAs provides a new perspective for the exploration of the potential mechanism of tumor genesis and development. In this review, we summarize the potential mechanisms and effects of m6A and non-coding RNAs in gastrointestinal tract cancers.


2020 ◽  
Vol 21 (14) ◽  
pp. 4886 ◽  
Author(s):  
Nai-Yu Ko ◽  
Li-Ru Chen ◽  
Kuo-Hu Chen

Osteoporosis is a major concern worldwide and can be attributed to an imbalance between osteoblastic bone formation and osteoclastic bone resorption due to the natural aging process. Heritable factors account for 60–80% of optimal bone mineralization; however, the finer details of pathogenesis remain to be elucidated. Micro RNA (miRNA) and long-non-coding RNA (lncRNA) are two targets that have recently come into the spotlight due to their ability to control gene expression at the post-transcriptional level and provide epigenetic modification. miRNAs are a class of non-coding RNAs that are approximately 18–25 nucleotides long. It is thought that up to 60% of human protein-coding genes may be regulated by miRNAs. They have been found to regulate gene expression that controls osteoblast-dependent bone formation and osteoclast-related bone remodeling. lncRNAs are highly structured RNA transcripts longer than 200 nucleotides that do not translate into proteins. They have very complex secondary and tertiary structures and the same degradation processes as messenger RNAs. The fact that they have a rapid turnover is due to their sponge function in binding the miRNAs that lead to a degradation of the lncRNA itself. They can act as signaling, decoy, and framework molecules, or as primers. Current evidence suggests that lncRNAs can act as chromatin and transcriptional as well as post-transcriptional regulators. With regards to osteoporosis, lncRNA is thought to be involved in the proliferation, apoptosis, and inflammatory response of the bone. This review, which is based on a systematic appraisal of the current literature, provides current molecular and genetic opinions on the roles of miRNAs and lncRNAs in osteoporosis. Further research into the epigenetic modification and the regulatory roles of these molecules will bring us closer to potential disease-modifying treatment for osteoporosis. However, more issues regarding the detailed actions of miRNAs and lncRNAs in osteoporosis remain unknown and controversial and warrant future investigation.


1995 ◽  
Vol 170 (1) ◽  
pp. 159-168 ◽  
Author(s):  
Tadashi Yasuda ◽  
Katsuji Shimizu ◽  
Yasuaki Nakagawa ◽  
Shingo Yamamoto ◽  
Hiroshi Niibayashi ◽  
...  

2018 ◽  
Author(s):  
Adam Richardson ◽  
Daniel Owens ◽  
Kehinde Ross

ABSTRACTEmerging evidence implicates microRNAs (miRNA) in the regulation of keratinocyte migration. However, the putative roles of microRNA-184 (miR-184) in keratinocyte migration have not been examined. Here, we show that miR-184 expression was elevated following wounding of human keratinocyte monolayers. The induction of miR-184 was dependent on store-operated calcium entry (SOCE) as it was abolished by pharmacologic SOCE blockers. The long non-coding RNA urothelial cancer associated 1 (UCA1), which is thought to acts as a sponge or competing endogenous RNA (ceRNA) against miR-184 was also induced in scratched monolayers. Induction of UCA1 was impaired, but not abolished, by SOCE inhibition. Transfection of keratinocytes with a miR-184 mimic stimulated migration in scratch assays, whereas inhibition of miR-184 dampened the ability of keratinocytes to migrate. Together, our data suggest, for the first time, that SOCE promotes miR-184 induction in wounded monolayers to support keratinocyte migration while also increasing lncRNA UCA1 expression, which may in turn regulate miR-184 activity in keratinocytes.


2014 ◽  
Vol 9 (S 01) ◽  
Author(s):  
MP Ashton ◽  
I Tan ◽  
L Mackin ◽  
C Elso ◽  
E Chu ◽  
...  

2020 ◽  
pp. 39-43
Author(s):  
A. V. Voronkina ◽  
T. A. Raskina ◽  
M. V. Letaeva ◽  
Yu. V. Averkieva ◽  
O. S. Malyshenko ◽  
...  

The development of atherosclerosis is closely related to the calcification of the vessel intima and fibrous plaques, being a complex and multifactorial process, in which the markers of bone formation and resorption play an important role. Objective. To study the biochemical markers of bone metabolism in men with stable coronary heart disease (CHD). Material and methods. The study included 102 men with verified CHD. Data were evaluated by densitometry, coronary angiography, multispiral computed tomography, color duplex scanning of brachiocephalic arteries, serum lipids (total cholesterol, triglycerides [TG], high-density [LHD] and low-density lipoprotein cholesterol), concentrationsin the blood of osteocalcin (OC), bone alkaline phosphatase (BAP), cathepsin K and C-telopeptides (CTx). Results. Concentrations of BAP, cathepsin K and CTx in patients with CHD were significantly higher than in men without CHD. The concentration of OC in men with normal bone mineral density was significantly lower than in patients with osteopenic syndrome. There was a direct correlation between OC and antiatherogenic HDL cholesterol and the inverse correlation between OC and TG, CTx and TG. There was no correlation between the level of bone remodeling markers and coronary artery (CA) lesion variant and the severity of coronary atherosclerosis on SYNTAX scale. The correlation analysis did not reveal the connection of biochemical markers of bone metabolism with the severity of coronary atherosclerosis and calcification and thickness of intima-media complex of carotid arteries. Absolute values of bone formation indices (BAP, OC) were significantly higher in patients with severe СA calcification than in patients without signs of calcification. Summary. Increased rates of osteogenesis and osteoresorption characterize the accelerated process of bone metabolism and indicate in favor of high rates of bone loss in men with CHD, which confirms the likelihood of common pathophysiological mechanisms of bone resorption and arterial calcification.


Sign in / Sign up

Export Citation Format

Share Document